Cieluch U, Anger K, Aujoulat F, Buchlolz F, Charmantier-Daures M, Charmantier G: Ontogeny of osmoregulatory structures and functions in the green crab Carinus maenas (Crustacea, Decapoda). J Exp Biol. 2004, 207: 325-336. 10.1242/jeb.00759.
Article
CAS
Google Scholar
Charmantier G, Charmantier-Daures M, Bouaricha N, Thuet P, Trilles J-P, Aiken DE: Ontogeny of osmoregulation and salinity tolerance in two decapod crustaceans: Homams americanus and Penaeus japonicus. Biol Bull. 1988, 175: 102-110. 10.2307/1541897.
Article
Google Scholar
Charmantier G, Haond C, Lignot J-H, Charmantier-Daures M: Ecophysiological adaptation to salinity throughout a life cycle: a review in homarid lobsters. J Exp Biol. 2001, 204: 967-977.
CAS
Google Scholar
Anger K, Spivak E, Luppi T: Effects of reduced salinities on development and bioenergetics of early larval shore crab. Carcinus maenas J Exp Mar Biol Ecol. 1998, 220: 287-304. 10.1016/S0022-0981(97)00110-X.
Article
Google Scholar
Van Engel WA: The blue crab and its fishery in Chesapeake Bay: Part I. Reproduction, early development, growth, and migration. Commer Fish Rev. 1958, 20: 6-17.
Google Scholar
Costlow JD, Bookhout CG: The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol Bull. 1959, 116: 373-396. 10.2307/1538947.
Article
Google Scholar
Epifanio CE, Garvine RW: Larval transport on the Atlantic Continental Shelf of North America: a review. Estuar Coast Shelf Sci. 2001, 52: 51-77. 10.1006/ecss.2000.0727.
Article
Google Scholar
Towle DW, Henry RP, Terwilliger NB: Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity. Comp Biochem Physiol Part D Genomics Proteomics. 2011, 6 (2): 115-125. 10.1016/j.cbd.2010.11.001.
Article
Google Scholar
Borgnia M, Nielsen S, Engel A, Agre P: Cellular and molecular biology of the aquaporin. Ann Rev Biochem. 1999, 68: 425-458. 10.1146/annurev.biochem.68.1.425.
Article
CAS
Google Scholar
Ishibashi K, Kondo S, Hara S, Mprishita Y: The evolutionary aspects of aquaporin family. Amer J Physiol Regul Interg Comp Physiol. 2011, 300: R566-R576. 10.1152/ajpregu.90464.2008.
Article
CAS
Google Scholar
Verkman AS, Mitra AK: Structure and function of aquaporin water channel. Am J Physiol Renal Physiol. 2000, 278: F13-F28.
CAS
Google Scholar
An KW, Kim NN, Shin HS, Kil G-S, Choi CY: Profiles of antioxidant gene expression and physiological changes by thermal and hypoosmotic stresses in black porgy (Acanthopagrus schlegeli). Comp Biochem Physiol A Mol Integr Physiol. 2010, 156: 262-268. 10.1016/j.cbpa.2010.02.013.
Article
Google Scholar
Tipsmark CK, Sorensen KJ, Madsen SS: Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and sewater acclimation. J Exp Biol. 2010, 213: 368-379. 10.1242/jeb.034785.
Article
CAS
Google Scholar
Martinez AS, Cutler CP, Wilson GD, Philips C, Hazon N, Cram G: Regulation of expression of two aquaporin homologues in the intestine of the European eel: effects of seawater acclimation and contrisol treatment. Am J Physiol. 2005, 57: 1733-1743.
Google Scholar
Aoki M, Kaneko T, Katoh F, Hasegawa S, Tsutsui N, Aida K: Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J Exp Biol. 2003, 206: 3495-3505. 10.1242/jeb.00579.
Article
Google Scholar
Giffard-Mena I, Boulo V, Aujoulat F, Fowden H, Castile R, Charmantier G: Aquaporin molecular characterization inthe sea-bass (Dicentrarchus labrax): the effect of salinity of AQP1 and AQP3 expression. Comp Bioch Physiol. 2007, 148: 430-444. 10.1016/j.cbpa.2007.06.002.
Article
Google Scholar
Livingstone M, Atas E, Meller A, Sonenberg N: Mechanisms governing the control of mRNA translation. Phys Biol. 2010, 7: 021001-10.1088/1478-3975/7/2/021001.
Article
Google Scholar
Hamilton TL, Stoneley M, Spriggs KA, Bushell M: TOPs and their regulation. Biochem Soc Trans. 2006, 34: 12-16. 10.1042/BST0340012.
Article
CAS
Google Scholar
Boassa D, Yool AJ: A fascinating tail: cGMP activation of aquaporin-1 ion channels. Trends Pharmacol Sci. 2002, 23: 558-562. 10.1016/S0165-6147(02)02112-0.
Article
CAS
Google Scholar
Han Z, Patil RV: Protein kinase A-dependent phosphorylation of aquaporin-1. Biochem Biophys Res Commun. 2000, 273: 328-332. 10.1006/bbrc.2000.2944.
Article
CAS
Google Scholar
An KW, Kim NN, Choi CY: Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation. Fish Physiol Biochem. 2008, 34: 185-194. 10.1007/s10695-007-9175-0.
Article
CAS
Google Scholar
Martinez A-S, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G: Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. Am J Physiol Regul Interg Comp Physiol. 2005, 288: R1733-R1743. 10.1152/ajpregu.00747.2004.
Article
CAS
Google Scholar
King LS, Agre P: From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol. 2004, 5: 687-698. 10.1038/nrm1469.
Article
CAS
Google Scholar
Zardoya R: Phyology and evolution of the major intrinsic protein family. Biol Cell. 2005, 97: 397-414. 10.1042/BC20040134.
Article
CAS
Google Scholar
Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G: Insights on the evolution of trehalose biosynthesis. BMC Evol Biol. 2006, 19: 119-
Google Scholar
Nejsum LN: The renal plumbing system: aquaporin water channels. Cell Mol Life Sci. 2005, 62 (15): 1692-1706. 10.1007/s00018-005-4549-x.
Article
CAS
Google Scholar
Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J: The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol. 2010, 10: 38-10.1186/1471-2148-10-38.
Article
Google Scholar
Kaufmann N, Mathai JC, Hill WG, Dow JAT, Zeidel ML, Brodsky JL: Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am J Physiol Cell Physiol. 2005, 289: C397-C407. 10.1152/ajpcell.00612.2004.
Article
CAS
Google Scholar
Campbell EM, Ball A, Hoppler S, Bowman AS: Invertebrate aquaporins: a review. J Comp Physiol B. 2008, 178: 935-955. 10.1007/s00360-008-0288-2.
Article
CAS
Google Scholar
Kuwahara M, Asai T, Sato K, Shinbo I, Terada Y, Marumo F, Sasaki S: Functional characterization of a water channel of the nematode Caenorhabditis elegans. Biochem Biophys Acta. 2000, 1517: 107-112. 10.1016/S0167-4781(00)00268-2.
CAS
Google Scholar
Huang CG, Lamitina T, Arge P, Strange K: Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Physiol Cell Physiol. 2007, 292: C1867-C1873.
Article
CAS
Google Scholar
Selection for retention or export of larvae in estuaries. Edited by: Strathmann RR. 1982, New York: Academic Press
Google Scholar
Charmantier G, Charmantier-Daures M, Anger K: Ontogeny of osmoregulation in the grapsid crab Armases miersii (Crustacea, Decapoda). Mar Ecol Prog Ser. 1998, 164: 285-292.
Article
Google Scholar
Anger K, Charmantier G: Ontogeny of osmoregulation and salinity tolerance in a mangrove crab, Sesarma curacaoense (Decapoda: grapsidae). J Exp Mar Biol Ecol. 2000, 251: 265-274. 10.1016/S0022-0981(00)00223-9.
Article
Google Scholar
Charmantier G, Anger K: Ontogeny of osmoregulation in the palaemonid shrimp Palaemonetes argentinus (Crustacea: Decapoda). Mar Ecol Prog Ser. 1999, 181: 125-129.
Article
Google Scholar
Susanto GN, Charmantier G: Ontogeny of osmoregulation in the crayfish Astacus leptodactylus. Physiol Biochem Zool. 2000, 73: 169-176. 10.1086/316736.
Article
CAS
Google Scholar
Ogburn MB, Jackson JL, Forward RB: Comparision of low salinity tolerance in Callinectes sapidus Rathbun and Callinectes similis Williams postlarvae upon entry into an estuary. J Exp Mar Biol Ecol. 2007, 352: 343-350. 10.1016/j.jembe.2007.08.008.
Article
CAS
Google Scholar
Chung JS, Zmora N, Tsutsui N, Katayama H: Crustacean hyperglycemic hormone (CHH) neuropeptides family: function, titer, and binding to target tissues. Gen Comp Endocrinol. 2010, 166: 447-454. 10.1016/j.ygcen.2009.12.011.
Article
CAS
Google Scholar
Spanings-Pierrot C, Soyez D, Van Herp F, Gompel M, Skaret G, Grousset E, Charmantier G: Involvement of crustacean hyperglycemic neurohormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. General and Comparative Endocrinolgy. 2000, 119: 340-350. 10.1006/gcen.2000.7527.
Article
CAS
Google Scholar
Serrano L, Blanvilain G, Soyez D, Charmantier G, Grousset E, Aujoulat F, Spanings-Pierrot C: Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus. J Exp Biol. 2003, 2003: 979-988.
Article
Google Scholar
Chung JS, Dircksen H, Webster SG: A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Nat Acad Sci USA. 1999, 96: 13013-13107.
Article
Google Scholar
Webster SG, Keller R, Dircksen H: The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting and reproduction. Gen Comp Endocrinol. 2012, 175: 217-233. 10.1016/j.ygcen.2011.11.035.
Article
CAS
Google Scholar
Chung JS, Webster SG: Expression and release patterns of neuropeptides during embryonic development and hatching in the green crab, Carcinus maenas. Development. 2004, 131: 4751-4761. 10.1242/dev.01312.
Article
CAS
Google Scholar
Zmora O, Findiesen A, Stubblefield J, Fraenkel V, Zohar Y: Large-scale juvenile production of the blue crab Callinectes sapidus. Aquaculture. 2005, 244: 129-139. 10.1016/j.aquaculture.2004.11.012.
Article
Google Scholar
Kennedy VS: External anatomy of blue crab larvae. The Blue Crab. Edited by: Kennedy VS, Cronin LE. 2007, College Park: Maryland Sea Grant, 23-54.
Google Scholar
Chung JS, Bembe S, Tamone S, Andrews E, Thomas H: Molecular cloning of the crustacean hyperglycemic hormone (CHH) precursor from the X-organ and the identification of the neuropeptide from sinus gland of the Alaskan Tanner crab, Chionoecetes bairdi. Gen Comp Endocrinol. 2009, 162: 129-133. 10.1016/j.ygcen.2009.03.012.
Article
CAS
Google Scholar
Chung JS, Wilcockson DC, Zmora N, Zohar Y, Dircksen H, Webster SG: Identification and developmental expression of mRNA encoding crustacean cardioactive peptide (CCAP) in decapod crustaceans. J Exp Biol. 2006, 209: 3862-3872. 10.1242/jeb.02425.
Article
CAS
Google Scholar
Chung JS, Zmora N: Functional studies of crustacean hyperglycemic hormone (CHHs) of the blue crab, Callinectes sapidus- the expression and release of CHH in eyestalk and pericardial organ in response to environmental stress. FEBS J. 2008, 275: 693-704. 10.1111/j.1742-4658.2007.06231.x.
Article
CAS
Google Scholar
Chung JS, Bachvaroff TR, Trant J, Place A: A second copper zinc superoxide dismutase (CuZnSOD) in the blue crab Callinectes sapidus: Cloning and up-regulated expression in the hemocytes after immune challenge. Fish Shellfish Immunol. 2012, 32 (1): 16-25. 10.1016/j.fsi.2011.08.023.
Article
CAS
Google Scholar
Huang HY, Chien CH, Jen KH, Huang HD: RegRNA: A regulatory RNA motifs and elements finder. Nucleic Acids Res. 2006, 34: W429-W434. 10.1093/nar/gkl333.
Article
CAS
Google Scholar
Kelley LA, Sternberg MJE: Protein structure prediction on the web: A case study using the Phyre server. Nat Protoc. 2009, 4: 363-371.
Article
CAS
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al: Phyologeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36: W465-W459. 10.1093/nar/gkn180.
Article
CAS
Google Scholar
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al: CDD: a Conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39: 225-229. 10.1093/nar/gkq769.
Article
Google Scholar
Chung JS, Manor R, Sagi A: Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: Implications for eyestalk regulation of IAG expression. Gen Comp Endocrinol. 2011, 173: 4-10. 10.1016/j.ygcen.2011.04.017.
Article
CAS
Google Scholar
Chung JS, Webster SG: Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. Eur J Biochem. 2003, 270: 3280-3288. 10.1046/j.1432-1033.2003.03720.x.
Article
CAS
Google Scholar
Chung JS: A trehalose 6-phosphate synthase gene of the hemocytes of the blue crab, Callinectes sapidus: cloning, the expression, its enzyme activity and relationship to hemolymph trehalose levels. Saline Systems. 2008, 4: 18-10.1186/1746-1448-4-18.
Article
Google Scholar