Moorhead JA, Zeng C: Development of captive breeding techniques for marine ornamental fish: a review. Rev Fish Sci. 2000, 18: 315-343.
Article
Google Scholar
Wabnitz C, Taylor M, Green E, Razak T: From Ocean to aquarium: The global trade in marine ornamental species. 2003, Cambridge, UK: UNEP-WCMC
Google Scholar
Bœuf G, Payan P: How should salinity influence fish growth?. Comp Biochem Physiol C. 2001, 130: 411-423. 10.1016/S1095-6433(01)00439-1.
Google Scholar
Specker JL, Schreiber AM, McArdle ME, Poholek A, Henderson J, Bengtson DA: Metamorphosis in summer flounder: effects of acclimation to low and high salinities. Aquaculture. 1999, 176: 145-154. 10.1016/S0044-8486(99)00057-5.
Article
Google Scholar
Hoff FH: Conditioning, spawning and rearing of fish with emphasis on marine clownfish. 1996, Dade City, FL: Aquaculture Consultants Inc
Google Scholar
Wilkerson JD: Clownfish: A guide their captive care, breeding & natural history. 2001, New Jersey: T.F.H. Publications Inc.
Google Scholar
Michael SW: Damselfishes & Anemonefishes. 2008, New Jersey: T.F.H. Publications Inc.
Google Scholar
Manzon LA: The role of prolactin in fish osmoregulation: a review. Gen Comp Endocrinol. 2002, 125 (2): 291-310. 10.1006/gcen.2001.7746.
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
Article
CAS
Google Scholar
Dhaneesh KV, Nanthini DK, Ajith Kumar TT, Balasubramanian T, Tissera K: Breeding, embryonic development and salinity tolerance of skunk clownfish Amphiprion akallopisos. J King Saud Uni Sci. 2012, 24 (3): 201-209. 10.1016/j.jksus.2011.03.005.
Article
Google Scholar
Partridge GJ, Jenkins GI: The effect of salinity on growth and survival of juvenile black bream Acanthopagrus butcheri. Aquaculture. 2002, 210: 219-230. 10.1016/S0044-8486(01)00817-1.
Article
Google Scholar
Singley JA, Chavin W: Cortisol levels of normal goldfish Carassius auratus L., and response to osmotic change. Am Zool. 1971, 11: 653-
Google Scholar
Peterson MS, Rakocinski SH, Comyns BH, Fulling GL: Influence of temperature and salinity on laboratory growth of juvenile Mugil sp. and implications to variable field growth. Gulf Research Reports. vol. 11. 1999, 75-
Google Scholar
Le François N, Lamarre S, Blier P: Tolerance, growth and haloplasticity of the Atlantic wolffish Anarhichas lupus exposed to various salinities. Aquaculture. 2004, 236: 659-675. 10.1016/j.aquaculture.2004.02.021.
Article
Google Scholar
Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín del Río MP, Soengas JL, Mancera JM: Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: Implications for osmoregulation and energy metabolism. Aquaculture. 2005, 250: 849-861. 10.1016/j.aquaculture.2005.05.021.
Article
Google Scholar
Imsland AK, Gústavsson A, Gunnarsson S, Foss A, Árnason J, Arnarson I, Jónsson AF, Smáradóttir H, Thorarensen H: Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Altantic halibut Hippoglossus hippoglossus L. Aquaculture. 2008, 274: 254-259. 10.1016/j.aquaculture.2007.11.021.
Article
CAS
Google Scholar
Rao G: Oxygen consumption of rainbow trout Salmo gairdneri in relation to activity and salinity. Can J Zool. 1968, 46: 781-786. 10.1139/z68-108.
Article
CAS
Google Scholar
Imsland AK, Gunnarsson S, Foss A, Stefansson SO: Gill Na+, K+−ATPase activity, plasma chloride and osmolality in juvenile turbot Scophthalmus maximus reared at different temperatures and salinities. Aquaculture. 2003, 218: 671-683. 10.1016/S0044-8486(02)00423-4.
Article
CAS
Google Scholar
Lambert Y, Dutil JD, Munro J: Effect of intermediate and low salinity conditions on growth rate and food conversion of Atlantic cod Gadus morhua. Can J Fish Aquat Sci. 1994, 51: 1569-1576. 10.1139/f94-155.
Article
Google Scholar
Mancera JM, McCormick SD: Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen Comp Endocrinol. 1998, 111 (2): 103-112. 10.1006/gcen.1998.7086.
Article
CAS
Google Scholar
Astola A, Ortiz M, Calduch-Giner JA, Perez-Sanchez J, Valdivia MM: Isolation of Sparus auratus prolactin gene and activity of the cis-acting regulatory elements. Gen Comp Endocrinol. 2003, 134 (1): 57-61. 10.1016/S0016-6480(03)00214-4.
Article
CAS
Google Scholar
Boutet I, Lorin-Nebel C, De Lorgeril J, Guinand B: Molecular characterisation of prolactin and analysis of extrapituitary expression in the European sea bass Dicentrarchus labrax under various salinity conditions. Comp Biochem Physiol Part D Genomics Proteomics. 2007, 2 (1): 74-83. 10.1016/j.cbd.2006.12.002.
Article
CAS
Google Scholar
Noso T, Nicoll CS, Polenov AL, Kawauchi H: The primary structure of sturgeon prolactin: phylogenetic implication. Gen Comp Endocrinol. 1993, 91 (1): 90-95. 10.1006/gcen.1993.1108.
Article
CAS
Google Scholar
Noso T, Nicoll CS, Kawauchi H: Lungfish prolactin exhibits close tetrapod relationships. Biochim Biophys Acta. 1993, 1164 (2): 159-165. 10.1016/0167-4838(93)90243-K.
Article
CAS
Google Scholar
Querat B, Cardinaud B, Hardy A, Vidal B, D’Angelo G: Sequence and regulation of European eel prolactin mRNA. Mol Cell Endocrinol. 1994, 102 (1–2): 151-160.
Article
CAS
Google Scholar
Chao SC, Pan FM, Chang WC: Nucleotide sequence of carp prolactin cDNA. Nucleic Acids Res. 1988, 16 (19): 9350-10.1093/nar/16.19.9350.
Article
CAS
Google Scholar
Yamaguchi K, Specker JL, King DS, Yokoo Y, Nishioka RS, Hirano T, Bern HA: Complete amino acid sequences of a pair of fish (tilapia) prolactins, tPRL177 and tPRL188. J Biol Chem. 1988, 263 (19): 9113-9121.
CAS
Google Scholar
Chan YH, Cheng KW, Yu KL, Chan KM: Identification of two prolactin cDNA sequences from a goldfish pituitary cDNA library. Biochim Biophys Acta. 1996, 1307 (1): 8-12. 10.1016/0167-4781(96)00032-2.
Article
Google Scholar
Auperin B, Rentier-Delrue F, Martial JA, Prunet P: Evidence that two tilapia (Oreochromis niloticus) prolactins have different osmoregulatory functions during adaptation to a hyperosmotic environment. J Mol Endocrinol. 1994, 12 (1): 13-24. 10.1677/jme.0.0120013.
Article
CAS
Google Scholar
Lee KM, Kaneko T, Aida K: Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes. Gen Comp Endocrinol. 2006, 146 (3): 318-328. 10.1016/j.ygcen.2005.12.003.
Article
CAS
Google Scholar
Doneen BA, Bewley TA, Li CH: Studies on prolactin. Selective reduction of the disulfide bonds of the ovine hormone. Biochemistry. 1979, 18 (22): 4851-4860. 10.1021/bi00589a013.
Article
CAS
Google Scholar
Mazeaud M, Mazeaud F, Donaldson EM: Primary and secondary effects if stress in fish: Some new data with a general review. Trans Ame Fish Soc. 1977, 106: 201-212. 10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2.
Article
CAS
Google Scholar
Laiz-Carrion R, Fuentes J, Redruello B, Guzman JM, Martin del Rio MP, Power D, Mancera JM: Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen Comp Endocrinol. 2009, 162 (3): 293-300. 10.1016/j.ygcen.2009.03.026.
Article
CAS
Google Scholar
Riley LG, Hirano T, Grau EG: Effects of transfer from seawater to fresh water on the growth hormone/insulin-like growth factor-I axis and prolactin in the Tilapia, Oreochromis mossambicus. Comp Biochem Physiol B Biochem Mol Biol. 2003, 136 (4): 647-655. 10.1016/S1096-4959(03)00246-X.
Article
CAS
Google Scholar
Chang YJ, Min BH, Choi CY: Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp Biochem Physiol B Biochem Mol Biol. 2007, 147 (1): 122-128. 10.1016/j.cbpb.2007.01.006.
Article
Google Scholar
Agustsson T, Sundell K, Sakamoto T, Ando M, Th Bjornsson B: Pituitary gene expression of somatolactin, prolactin, and growth hormone during Atlantic salmon parr–smolt transformation. Aquaculture. 2003, 222: 229-238. 10.1016/S0044-8486(03)00124-8.
Article
CAS
Google Scholar
Yada T, Tsuruta T, Sakano H, Yamamoto S, Abe N, Takasawa T, Yogo S, Suzuki T, Iguchi K, Uchida K, et al: Changes in prolactin mRNA levels during downstream migration of the amphidromous teleost, ayu Plecoglossus altivelis. Gen Comp Endocrinol. 2010, 167 (2): 261-267. 10.1016/j.ygcen.2010.03.026.
Article
CAS
Google Scholar
Noh GE, Lim HK, Kim JM: Characterization of genes encoding prolactin and prolactin receptors in starry flounder Platichthys stellatus and their expression upon acclimation to freshwater. Fish Physiol Biochem. 2012, in press
Google Scholar