Underwood GJC, Kromkamp J: Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res. 1999, 29: 93-153.
Article
CAS
Google Scholar
de Winder B, Staats N, Stal LJ, Paterson DM: Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res. 1999, 42: 131-146. 10.1016/S1385-1101(99)00021-0.
Article
CAS
Google Scholar
Paterson DM: Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol Oceanogr. 1989, 34: 223-234. 10.4319/lo.1989.34.1.0223.
Article
Google Scholar
Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C: Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res. 2013, 92: 92-101.
Article
Google Scholar
Jorgensen BB: Mineralization of organic-matter in the sea bed - the role of sulfate reduction. Nature. 1982, 296: 643-645. 10.1038/296643a0.
Article
Google Scholar
Leloup J, Quillet L, Berthe T, Petit F: Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol. 2006, 55: 230-238. 10.1111/j.1574-6941.2005.00021.x.
Article
CAS
Google Scholar
Visscher PT, Gritzer RF, Leadbetter ER: Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl Environ Microbiol. 1999, 65: 3272-3278.
CAS
Google Scholar
Cappenberg TE, Prins RA: Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. experiments with 14C-labeled substrates. Antonie Van Leeuwenhoek. 1974, 40: 457-469. 10.1007/BF00399358.
Article
CAS
Google Scholar
Widdel F, Pfennig N: A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol. 1977, 112: 119-122. 10.1007/BF00446665.
Article
CAS
Google Scholar
Barton LL, Tomei FA: Sulfate-Reducing Bacteria. Edited by: Barton LL. 1995, New York, US: Springer, 1-32. Characteristics and activities of sulfate-reducing bacteria, 8, Biotechnology Handbooks,
Chapter
Google Scholar
Coulon F, Chronopoulou PM, Fahy A, Paisse S, Goni-Urriza M, Peperzak L, Acuna Alvarez L, McKew BA, Brussaard CP, Underwood GJ, Timmis KN, Duran R, McGenity TJ: Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol. 2012, 78: 3638-3648. 10.1128/AEM.00072-12.
Article
CAS
Google Scholar
Leloup J, Petit F, Boust D, Deloffre J, Bally G, Clarisse O, Quillet L: Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the Seine estuary (France). Microb Ecol. 2005, 50: 307-314. 10.1007/s00248-004-0034-6.
Article
CAS
Google Scholar
Mayor DJ, Thornton B, Zuur AF: Resource quantity affects benthic microbial community structure and growth efficiency in a temperate intertidal mudflat. PLoS One. 2012, 7: e38582-10.1371/journal.pone.0038582.
Article
CAS
Google Scholar
Roling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, Head IM: Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol. 2004, 70: 2603-2613. 10.1128/AEM.70.5.2603-2613.2004.
Article
Google Scholar
Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NF: Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol. 2013, 66: 96-104. 10.1007/s00248-013-0238-8.
Article
Google Scholar
Lee J, Lee TK, Loffler FE, Park J: Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation. 2011, 22: 687-698. 10.1007/s10532-010-9429-x.
Article
CAS
Google Scholar
Dent DL, Pons LJ: A world perspective on acid sulphate soils. Geoderma. 1995, 67: 263-276. 10.1016/0016-7061(95)00013-E.
Article
Google Scholar
Grealish G, Fitzpatrick R: Acid sulphate soil characterization in Negara Brunei Darussalam: a case study to inform management decisions. Soil Use Manage. 2013, 29: 432-444. 10.1111/sum.12051.
Article
Google Scholar
Grealish G, Fitzpatrick R, Ringrose-Voase A, Hicks W: Brunei: Summary of Acid Sulfate Soils. 2008, Perth, Australia
Google Scholar
Brunei Shell Petroleum Company Sendrian Berhard, Brunei Museum /Brunei Darussalam: The geology and hydrocarbon resources of Negara Brunei Darussalam. Edited by: Sandal ST. 1996, Syabas, ISBN 9991790004, 9789991790008, 2
Google Scholar
MacDonald DD, Carr RS, Eckenrod D, Greening H, Grabe S, Ingersoll CG, Janicki S, Janicki T, Lindskoog RA, Long ER, Pribble R, Sloane G, Smorong DE: Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida. Arch Environ Contam Toxicol. 2004, 46: 147-161.
CAS
Google Scholar
Bush RT, Sullivan LA, Fyfe D, Johnston S: Redistribution of monosulfidic black oozes by floodwaters in a coastal acid sulfate soil floodplain. Aust J Soil Res. 2004, 42: 603-607. 10.1071/SR03073.
Article
CAS
Google Scholar
Clark MW, McConchie D, Lewis DW, Saenger P: Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol. 1998, 149: 147-171. 10.1016/S0009-2541(98)00034-5.
Article
CAS
Google Scholar
Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV: Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar Ecol Prog Ser. 2003, 259: 129-138.
Article
CAS
Google Scholar
Marshall DJ, Santos JH, Leung KM, Chak WH: Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Mar Environ Res. 2008, 66: 422-429. 10.1016/j.marenvres.2008.07.003.
Article
CAS
Google Scholar
The Coastal Environmental Profile of Brunei Darussalam: Resource Assessment and Management Issues, Wokring Papers. Edited by: Chua TE, Chou LM, Sadorra MSM. 1987, Penang, Malaysia: The Worldfish Center
Google Scholar
Howland RJ, Tappin AD, Uncles RJ, Plummer DH, Bloomer NJ: Distributions and seasonal variability of pH and alkalinity in the Tweed Estuary, UK. Sci Total Environ. 2000, 251–252: 125-138.
Article
Google Scholar
Loreau M, de Mazancourt C: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013, 16 (Suppl 1): 106-115.
Article
Google Scholar
Telesh I, Schubert H, Skarlato S: Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar Coast Shelf Sci. 2013, 135: 317-327.
Article
Google Scholar
Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R: Impacts of biodiversity loss on ocean ecosystem services. Science. 2006, 314: 787-790. 10.1126/science.1132294.
Article
CAS
Google Scholar
Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ: Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science. 2004, 305: 362-366. 10.1126/science.1097329.
Article
CAS
Google Scholar
Waldbusser GG, Salisbury JE: Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann Rev Mar Sci. 2014, 6: 221-247. 10.1146/annurev-marine-121211-172238.
Article
Google Scholar
Chao A: Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984, 11: 265-270.
Google Scholar
Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR: Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 2013, 7: 50-60. 10.1038/ismej.2012.79.
Article
Google Scholar
Bolhuis H, Fillinger L, Stal LJ: Coastal microbial mat diversity along a natural salinity gradient. PLoS One. 2013, 8: e63166-10.1371/journal.pone.0063166.
Article
CAS
Google Scholar
Bolhuis H, Cretoiu MS, Stal LJ: Molecular ecology of microbial mats. FEMS Microbiol Ecol. 2014, doi:10.1111/1574-6941.12408
Google Scholar
Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A. 2006, 103: 12115-12120. 10.1073/pnas.0605127103.
Article
CAS
Google Scholar
Bolhuis H, Stal LJ: Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 2011, 5: 1701-1712. 10.1038/ismej.2011.52.
Article
CAS
Google Scholar
Zhang W, Ki JS, Qian PY: Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuar Coast Shelf Sci. 2008, 76: 668-681. 10.1016/j.ecss.2007.07.040.
Article
Google Scholar
Toes AC, Finke N, Kuenen JG, Muyzer G: Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments. Arch Environ Contam Toxicol. 2008, 55: 372-385. 10.1007/s00244-008-9135-4.
Article
CAS
Google Scholar
Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM: Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microb. 2001, 67: 4399-4406. 10.1128/AEM.67.10.4399-4406.2001.
Article
CAS
Google Scholar
Sahoo K, Dhal NK: Potential microbial diversity in mangrove ecosystems: a review. Indian J Mar Sci. 2009, 38: 249-256.
CAS
Google Scholar
Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW: Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012, 78: 8264-8271. 10.1128/AEM.01821-12.
Article
CAS
Google Scholar
Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U: Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser. 1999, 187: 77-87.
Article
Google Scholar
Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnar DA, Vanura K, Wagner M, Horn M, Ott JA, Bright M: “Candidatus Thiobios zoothamnicoli,” an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol. 2006, 72: 2014-2021. 10.1128/AEM.72.3.2014-2021.2006.
Article
CAS
Google Scholar
Neutzling O, Pfleiderer C, Trüper HG: Dissimilatory sulphur metabolism in phototrophic non-sulphur bacteria. J Gen Microbiol. 1985, 131: 791-798.
CAS
Google Scholar
Selig ER, Turner WR, Troeng S, Wallace BP, Halpern BS, Kaschner K, Lascelles BG, Carpenter KE, Mittermeier RA: Global priorities for marine biodiversity conservation. PLoS One. 2014, 9: e82898-10.1371/journal.pone.0082898.
Article
Google Scholar
Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hal R, Ng PKL, Shih HT, Carvalho GR, von Rintelen T: Biogeography of the Indo-Australian Archipelago. Annu Rev Ecol Evol S. 2011, 42: 205-226. 10.1146/annurev-ecolsys-102710-145001.
Article
Google Scholar
Sulaiman ZH, Mayden RL: Cypriniformes of borneo (Actinopterygii, otophysi): an extraordinary fauna for integrated studies on diversity, systematics, evolution, ecology, and conservation. Zootaxa. 2012, 3586: 359-376.
Google Scholar
Garbutt N, Prudente JC: Wild Borneo: The Wildlife and Scenery of Sabah, Sarawak, Brunei and Kalimantan. 2006, Cambridge, Mass: MIT Press, 176-
Google Scholar
Wong KM, Chan CL: Mount Kinabalu: Borneo’s Magic Mountain: An Introduction to the Natural History of One of the World’s Great Natural Monuments. 1997, Kota Kinabalu: Natural History Publications
Google Scholar
Rohde K: Latitudinal gradients in species-diversity - the search for the primary cause. Oikos. 1992, 65: 514-527. 10.2307/3545569.
Article
Google Scholar
Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC: Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci. 2011, 108: 7850-7854. 10.1073/pnas.1016308108.
Article
CAS
Google Scholar
Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ: Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol Ecol. 2014, 23: 2260-2274. 10.1111/mec.12739.
Article
CAS
Google Scholar
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB: Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012, 10: 497-506.
CAS
Google Scholar
de Bruyn M, Ruber L, Nylinder S, Stelbrink B, Lovejoy NR, Lavoue S, Tan HH, Nugroho E, Wowor D, Ng PK, Siti Azizah MN, Von Rintelen T, Hall R, Carvalho GR: Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. Syst Biol. 2013, 62: 398-410. 10.1093/sysbio/syt007.
Article
Google Scholar
Stein A, Gerstner K, Kreft H: Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett. 2014, 7: 866-880.
Article
Google Scholar
Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L: Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation. Genes Genet Syst. 2013, 88: 93-103.
Article
CAS
Google Scholar
Raes N, Roos MC, Slik JWF, van Loon EE, ter Steege H: Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography. 2009, 32: 180-192. 10.1111/j.1600-0587.2009.05800.x.
Article
Google Scholar
Hossain MB, Marshall DJ, Venkatramanan S: Sediment granulometry and organic matter content in the intertidal zone of the Sungai Brunei estuarine system, northwest coast of Borneo. Carpath J Earth Env Sci. 2014, 9: 231-239.
Google Scholar
Edwards U, Rogall T, Blocker H, Emde M, Bottger EC: Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17: 7843-7853. 10.1093/nar/17.19.7843.
Article
CAS
Google Scholar
Lane DJ: 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics. Edited by: Stackebrandt E, Goodfellow M. 1991, Chichester, United Kingdom: John Wiley and Sons, 115-175.
Google Scholar
Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H: Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. 1996, 178: 5636-5643.
CAS
Google Scholar
Piquet AM, Bolhuis H, Davidson AT, Thomson PG, Buma AG: Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiol Ecol. 2008, 66: 352-366. 10.1111/j.1574-6941.2008.00588.x.
Article
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013, 41: D590-D596. 10.1093/nar/gks1219.
Article
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009, 75: 7537-7541. 10.1128/AEM.01541-09.
Article
CAS
Google Scholar