Dunal F: Extrait d'un mémoire sur les algues qui colorent en rouge certains eaux des marais salants méditerranéens. Ann Sc Nat Bot 2 Sér. 1838, 9: 172-
Google Scholar
Teodoresco EC: Organisation et développement du Dunaliella, nouveau genre de Volvocacée-Polyblepharidée. Beih z Bot Centralbl. 1905, Bd. XVIII: 215-232.
Google Scholar
Ginzburg M: Dunaliella : a green alga adapted to salt. Adv Bot Res. 1987, 14: 93-183.
Article
CAS
Google Scholar
Avron M, Ben-Amotz A, Ed: Dunaliella: Physiology, Biochemistry, and Biotechnology. 1992, Boca Raton: CRC Press
Google Scholar
Oren A: Halophilic Microorganisms and their Environments. 2002, Dordrecht: Kluwer Academic Publishers
Book
Google Scholar
Turpin PJF: Quelques observations nouvelles sur les Protococcus, qui colorent en rouge les eaux des marais salants. Comp Rend Acad Sci. 1839
Google Scholar
Hamburger C: Zur Kenntnis der Dunaliella salina und einer Amöbe aus Salinenwasser von Cagliari. Arch f Protistenkd. 1905, 6: 111-131.
Google Scholar
Joly N: Histoire d'un petit crustacé (Artemia salina) auquel on a faussement attribué la coloration en rouge des marais salants méditerranéens, suivie de recherches sur la cause réelle de cette coloration. Ann Sc Nat Zool Ser 2. 1840, 13: 225-
Google Scholar
Oren A, Stambler N, Dubinsky Z: On the red coloration of saltern crystallizer ponds. Int J Salt Lake Res. 1992, 1 (2): 77-89.
Article
Google Scholar
Oren A, Dubinsky Z: On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res. 1994, 3: 9-13. 10.1007/BF01990638.
Article
Google Scholar
Geleznow N: Über die Ursache der Färbung des Salzwassers im See Sak in der Krim. Bull de l'Académie Imp des Sciences de St Petersburg. 1872, 17: 557-
Google Scholar
Butschinsky P: Die Protozoenfauna der Salzseelimane bei Odessa. Zool Anz. 1897, 20-
Google Scholar
Blanchard R: Résultats d'une excursion zoologique en Algérie. Mém de la Soc Zool de France. 1891, IV-
Google Scholar
Florentin R: Faune des Mares Salées de Lorraine. 1899, Nancy
Google Scholar
Bujor P: Contributions à la faune des lacs salées de Roumanie. Ann Sci de l'Université de Jassy. 1900, 1-
Google Scholar
Blanchard R: Note préliminaire sur Monas Dunalii, flagellé, qui cause la rubéfaction des marais salants. Bull de la Soc Zool de France. 1888, 13: 153-
Google Scholar
Dujardin F: Histoire Naturelle des Zoophytes (Infusoires). 1841, Paris
Google Scholar
Cohn F: Chlamydomonas marina Cohn. Hedwigia. 1865, 4: 97-
Google Scholar
Hansgirg A: Prodromus d. Algenflora von Böhmen. 1866, 1: 106-
Google Scholar
Teodoresco EC: Observations morphologiques et biologiques sur le genre Dunaliella. Rev Gén Bot. 1906, 18: 353-371. 18: 409–427
Google Scholar
Cavara F: Alcune osservazione sulla Dunaliella salina (Dun.) Teod. delle saline di Cagliari. Rend della R Acad delle Sc Fis e Matemat. di Napoli Ser. 3. 1906, 12:
Google Scholar
Peirce GJ: The behavior of certain micro-organisms in brine. The Salton Sea. Carnegie Inst Washington Publ. 1914, 193: 49-70.
Google Scholar
Labbé A: Sur les modifications adaptives de Dunaliella salina Dunal. C R Acad Sci. 1921, 172: 1074-1076.
Google Scholar
Labbé A: Le cycle évolutif de Dunaliella salina. C R Acad Sci. 1921, 172: 1689-1690.
Google Scholar
Labbé A: Les variations de la concentration en ions hydrogène dans les marais salants, comme facteur biologique. C R Acad Sci. 1922, 175: 843-845.
Google Scholar
Baas Becking LGM: On organisms living in concentrated brine. Tijdschr Ned Dierk Ver Ser III. 1928, 1: 6-9.
Google Scholar
Baas-Becking LGM: Salt effects on swarmers of Dunaliella viridis Teod. J Gen Physiol. 1931, 14: 765-779. 10.1085/jgp.14.6.765.
Article
CAS
Google Scholar
Nicolai FE, Baas Becking LGM: Einige Notizen über Salzflagellaten. Arch f Protistenkd. 1935, 85: 319-328.
Google Scholar
Hamel G: Chlorophycées des côtes françaises. Extr Rev Algol. 1931, I-V: 4-6.
Google Scholar
Lerche W: Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch f Protistenkd. 1937, 88: 236-268.
CAS
Google Scholar
Butcher RW: An Introductory Account of the Smaller Algae of British Coastal Waters. Part I: Introduction and Chlorophyceae. 1959, London: Ministry for Agriculture, Fisheries and Food, Fishery Investigations, Series IV. Her Majesty's Stationery Office
Google Scholar
Massyuk NP: Morphology, Taxonomy, Ecology and Geographic Distribution of the Genus Dunaliella Teod. and Prospects for its Potential Utilization. 1973, Kiev: Naukova Dumka, (in Russian)
Google Scholar
Preisig HR: Morphology and taxonomy. Dunaliella: Physiology, Biochemistry and Biotechnology. Edited by: Ben-Amotz A, Avron M. 1992, Boca Raton: CRC Press, 1-15.
Google Scholar
Kalina T: Zur Morphologie und Taxonomie der Gattung Spermatozopsis Korschikow (Volvocales). Spermatozopsis acidophila sp. nov. Preslia. 1965, 37: 9-12.
Google Scholar
Albertano P, Pinto G, Santisi S, Taddei R: Spermatozopsis acidophila Kalina (Chlorophyta, Volvocales), a little known alga from highly acidic environments. Giorn Bot Ital. 1981, 115: 65-76.
Article
Google Scholar
Gimmler H, Weis U: Dunaliella acidophila – life at pH 1.0. Dunaliella: Physiology, Biochemistry and Biotechnology. Edited by: Ben-Amotz A, Avron M. 1992, Boca Raton: CRC Press, 99-133.
Google Scholar
González MA, Gómez PI, Montoya R: Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella. J Appl Phycol. 1999, 10: 573-580. 10.1023/A:1008035422784.
Article
Google Scholar
González MA, Coleman AW, Gómez PI, Montoya R: Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. J Phycol. 2001, 37: 604-611. 10.1046/j.1529-8817.2001.037004604.x.
Article
Google Scholar
Olmos J, Paniagua J, Contreras R: Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Lett Appl Microbiol. 2000, 30: 80-84. 10.1046/j.1472-765x.2000.00672.x.
Article
CAS
Google Scholar
Oren A, Gurevich P, Anati DA, Barkan E, Luz B: A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia. 1995, 297: 173-185. 10.1007/BF00019283.
Article
CAS
Google Scholar
Loeblich LA: Aplanospores of Dunaliella salina (Chlorophyta). J Protozool. 1969, 22-23. Suppl 16
Borowitzka LJ: The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia. 1981, 81: 33-46. 10.1007/BF00048704.
Article
Google Scholar
Brock TD: Salinity and the ecology of Dunaliella from Great Salt Lake. J Gen Microbiol. 1975, 89: 285-292.
Article
Google Scholar
Ruinen J: Notizen über Salzflagellaten. II. Über die Verbreitung der Salzflagellaten. Arch Protistenkd. 1938, 90: 210-258.
CAS
Google Scholar
Ben-Amotz A, Katz A, Avron M: Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol. 1982, 18: 529-537. 10.1111/j.0022-3646.1982.00529.x.
Article
CAS
Google Scholar
Ben-Amotz A, Lers A, Avron M: Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol. 1988, 86: 1286-1291.
Article
CAS
Google Scholar
Borowitzka MA: Micro-algae as sources of fine chemicals. Microbiol Sci. 1986, 3: 372-375.
CAS
Google Scholar
Aasen AJ, Eimhjellen KE, Liaaen-Jensen S: An extreme source of β-carotene. Acta Chem Scand. 1969, 23: 2544-2545.
Article
CAS
Google Scholar
Massyuk NP: Mass culture of the carotene bearing alga Dunaliella salina. Ukr Bot Zh. 1968, 23: 12-19.
Google Scholar
Drokova IH: The alga Dunaliella salina as a source of β-carotene. Ukr Bot Zh. 1961, 18: 110-
Google Scholar
Ben-Amotz A: Glycerol, β-carotene and dry algal meal production by commercial cultivation of Dunaliella. Algae Biomass. Edited by: Shelef G, Soeder CJ. 1980, Amsterdam: Elsevier, 603-610.
Google Scholar
Ben-Amotz A, Avron M: Accumulation of metabolites by halotolerant algae and its industrial potential. Ann Rev Microbiol. 1983, 37: 95-119. 10.1146/annurev.mi.37.100183.000523.
Article
CAS
Google Scholar
Borowitzka LJ, Borowitzka MA, Moulton TP: The mass culture of Dunaliella for fine chemicals: from laboratory to pilot plant. Hydrobiologia. 1984, 116/117: 115-121. 10.1007/BF00027649.
Article
Google Scholar
Ben-Amotz A, Avron M: The biotechnology of mass culturing Dunaliella for products of commercial interest. Algal and Cyanobacterial Biotechnology. Edited by: Cresswell RC, Rees TAV, Shah, N. 1989, Harlow: Longman Scientific and Technical Press, 91-114.
Google Scholar
Stephens DW, Gillespie DM: Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol Oceanogr. 1976, 21: 74-87.
Article
CAS
Google Scholar
Post FJ: The microbial ecology of the Great Salt Lake. Microb Ecol. 1977, 3: 143-165.
Article
CAS
Google Scholar
Volcani BE: The microorganisms of the Dead Sea. Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Collective volume. 1944, Rehovoth: Daniel Sieff Research Institute, 71-85.
Google Scholar
Kaplan IR, Friedmann A: Biological productivity in the Dead Sea. Part I. Microorganisms in the water column. Israel J Chem. 1970, 8: 513-528.
Article
CAS
Google Scholar
Oren A, Shilo M: Population dynamics of Dunaliella parva in the Dead Sea. Limnol Oceanogr. 1982, 27: 201-211.
Article
Google Scholar
Gibor A: The culture of brine algae. Biol Bull. 1956, 111: 223-229.
Article
Google Scholar
Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS: Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol. 1968, 95: 1461-1468.
CAS
Google Scholar
Van Auken OW, McNulty IB: The effect of environmental factors on the growth of a halophylic species of algae. Biol Bull. 1973, 145: 210-222.
Article
CAS
Google Scholar
Marrè E, Servettaz A: Sul meccanismo di adattemento a condizioni osmotiche estreme in Dunaliella salina. II. Rapporto fra concentrazioni del mezzo esterno e composizione del succo cellulare. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend Ser 8. 1959, 26: 272-278.
Google Scholar
Trezzi M, Galli MG, Bellini E: L'osomo-resistenza di Dunaliella salina. Ricerche ultrastructurali. Giorn Bot Ital. 1965, 72: 255-263.
Article
Google Scholar
Ginzburg M: The unusual membrane permeability of two halophilic unicellular organisms. Biochim Biophys Acta. 1969, 173: 370-376.
Article
CAS
Google Scholar
Katz A, Avron M: Determination of intracellular osmotic volume and sodium concentration in Dunaliella. Plant Physiol. 1985, 78: 817-820.
Article
CAS
Google Scholar
Katz A, Pick U, Avron M: Characterization and reconstitution of the Na+/H+ antiporter from the plasma membrane of the halophilic alga Dunaliella. Biochim Biophys Acta. 1989, 983: 1-4.
Article
Google Scholar
Katz A, Pick U: Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochim Biophys Acta. 2001, 1504: 423-431.
Article
CAS
Google Scholar
Craigie JS, McLachlan J: Glycerol as a photosynthetic product in Dunaliella tertiolecta Butcher. Can J Bot. 1964, 42: 777-778.
Article
CAS
Google Scholar
Wegmann K: Osmotic regulation of photosynthetic glycerol production in Dunaliella. Biochim Biophys Acta. 1971, 234: 317-323.
Article
CAS
Google Scholar
Ben-Amotz A, Avron M: The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 1973, 51: 875-878.
Article
CAS
Google Scholar
Borowitzka LJ, Brown AD: The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Microbiol. 1974, 96: 37-52. 10.1007/BF00590161.
Article
CAS
Google Scholar
Brown AD: Microbial Water Stress Physiology. Principles and Perspectives. 1990, Chichester: John Wiley & Sons
Google Scholar
Brown FF, Sussman I, Avron M, Degani H: NMR studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella. Biochim Biophys Acta. 1982, 690: 165-173.
Article
CAS
Google Scholar
Gimmler H, Hartung W: Low permeability of the plasma membrane of Dunaliella parva for solutes. J Plant Physiol. 1988, 133: 165-172.
Article
Google Scholar
Chen BJ, Chi CH: Process development and evaluation for algal glycerol production. Biotechnol Bioengin. 1981, 23: 1267-1287. 10.1002/bit.260230608.
Article
CAS
Google Scholar
Sadka A, Himmelhoch S, Zamir A: A 150 kilodalton cell surface protein is induced by salt in the halotolerant green alga Dunaliella salina. Plant Physiol. 1991, 95: 822-831.
Article
CAS
Google Scholar
Fisher M, Pick U, Zamir A: A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella. Plant Physiol. 1994, 106: 1359-1365.
CAS
Google Scholar
Fisher M, Gokhman I, Pick U, Zamir A: A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem. 1996, 271: 17718-17723. 10.1074/jbc.271.30.17718.
Article
CAS
Google Scholar
Fisher M, Gokhman I, Pick U, Zamir A: A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities. J Biol Chem. 1997, 272: 1565-1570. 10.1074/jbc.272.3.1565.
Article
CAS
Google Scholar
Liska AJ, Shevhenko A, Pick U, Katz A: Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol. 2004, 136: 2806-2817. 10.1104/pp.104.039438.
Article
CAS
Google Scholar