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Abstract
Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme
halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline
industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was
sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set
of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher
abundance during the summer (106–108 targets ml-1) and lower abundance from the autumn-spring
(103–105 targets ml-1). However, addition of concentrated dissolved organic matter into the
evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower
wastewater temperature (12–14°C). These results indicate that the qPCR approach can be used
for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh
environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained
over five years, which indicates a possible inhibition of SRB activity, following artificial salination
(≈16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected
by qPCR.

Findings
Sulfate-reducing bacteria (SRB) are anaerobic microor-
ganisms that use sulfate as an electron acceptor. They are
known to grow both heterotrophically, relying on small
organic molecules, and autotrophically, using H2 as the
electron donor and CO2 as the carbon source [1]. How-
ever, several studies have demonstrated that certain spe-
cies of SRB are not only able to tolerate high
concentrations of oxygen but can also utilize oxygen as a
terminal electron acceptor [2]. SRBs are known to be
present in the complex consortia of microorganisms

involved in the anaerobic digestion processes used in
municipal and industrial wastewater treatment. Further-
more, sulfate reduction may account for up to 50% of the
mineralization of organic matter in aerobic wastewater
treatment systems [3]. A major drawback of sulfate reduc-
tion in wastewater treatment is the production of the toxic
odorant H2S, which in addition, is an agent that signifi-
cantly enhances microbially-mediated corrosion of treat-
ment facilities [1]. This is especially true in the oil
industry, where sulfate reduction causes severe problems,
including souring of oil and gas deposits [4].
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Dissimilatory sulfate reduction occurs up to quite high
salt concentrations. Black sediments are often found on
the bottom of salt lakes and saltern ponds approaching
NaCl saturation [5,6]. Some culturable halophilic sulfate
reducers, such as Desulfovibrio halophilus, Desulfocella halo-
phila, Desulfovibrio oxyclinae and Desulfohalobium retbaense,
may grow from 18 up to 24% NaCl concentration at the
upper limit [7-10]. The dsrAB genes which encode dissim-
ilatory sulfite reductase, the key enzyme in dissimilatory
sulfate reduction, can be used as a phylogenetic marker for
identification of SRB [11]. These genes are found in all
known sulfate-reducing prokaryotes [12]. Thus, dsrAB
from all sulfate-reducing lineages can be targeted by a sin-
gle set of conserved primers or using specific primers from
variable regions of dsrAB.

In this study, a pair of universal PCR primers for the func-
tional gene dsrA [13] and two specific sets of primers for
dsrA of halophilic SRB, were designed and used for long-
term surveillance of SRB populations within five highly
saline industrial wastewater evaporation ponds by quan-
titative real-time PCR (qPCR). These ponds are the final
treatment stage of a combined wastewater stream contrib-
uted to by several chemical plants (manufacturing various
pesticides, pharmaceuticals, aliphatic and aromatic halo-
gens) at the Ramat-Hovav industrial park in the Negev
desert, Israel [14]. Organic matter concentration in the
wastewater stream is 2–2.5 gC/l (on the basis of total
organic carbon measure), of which over 30% reaches the
evaporation ponds. Receiving a mixture of saline, high
strength industrial wastewater, these ponds offer a unique
habitat for various microorganisms [15]. In order to
reduce the foul odors emitted by the ponds and, in partic-
ular, the H2S that results from SRB activity, salinity of the
evaporation ponds was artificially raised (August–Octo-
ber 2003) from an initial 3–7% to a final concentration of
about 12% (w/v) by addition of NaCl [16].

Total genomic DNA of wastewater samples was extracted
[13] from obtained pellets (derived from 30 ml samples)
using the MoBio Power Soil DNA isolation kit (MoBio
Laboratories, Solana Beach, CA). The pair of PCR primers
(DSR1F and RH3-dsr-R) that specifically detect and quan-
tify SRB was used as previously described [13]. The meas-
ured values were transformed to targets per milliliter of
wastewater.

The levels and seasonal dynamics of SRB present in the
complex environment of highly saline and concentrated
evaporation ponds demonstrated temperature-dependent
behavior, with higher abundance being detected during
summer (about 106–108 targets ml-1, temperature range
from 28 to 31°C) and lower levels being noted during the
winter months of November-March (about 103–105 tar-
gets ml-1, temperature range from 12 to 18°C) (Figure. 1).

Recently, similar high dsr gene copy numbers (as meas-
ured by qPCR) of up to 108 SRB cells ml-1 were detected in
hypersaline soda lakes of the Kulunda Steppe in south-
eastern Siberia in Russia, where total salt concentration
ranges from 50 to 500 g liter-1 [6]. Over next three sum-
mers (2006–2008), the abundance of SRB in the evapora-
tion ponds decreased to levels of 106 targets ml-1, with the
average temperature being about 28°C. The relatively low
levels of SRB detected during the summers, relative to that
level measured in the summer of 2005 (108 targets ml-1),
might be attributed to subsequent increases in salinity
(due to natural evaporation) up to about 14–18% (w/v),
to diminished flow distribution between the ponds, and
to the reduction of organic load following the gradual
application of treatment processes by the various indus-
trial plants. On the other hand, during January-February
of 2008, an unusual increase in SRB levels was observed
(up to 105 targets ml-1), despite lower temperature that
ranged from 11.5 to 14°C (Figure. 1; marked by a dashed
red ellipse). Further investigation revealed that at the end
of December, 2007, a massive load of concentrated
organic matter and biomass residuals from a bioreactor
(that had been cleaned) was poured into the evaporation
ponds, immediately contributing to proliferation of SRB.
In March, 2008, the concentration of SRB decreased again
(to 1.7 × 104 targets ml-1), within to the usual range seen
in non-summer months. Seasonal dynamics of SRB fol-
low temperature changes, as well as the single occurrence
of an increase in SRB levels following an organic load
increase (Figure. 1), indicate that our qPCR approach is

Seasonal evolution of SRBs in highly saline industrial waste-water evaporation pondsFigure 1
Seasonal evolution of SRBs in highly saline industrial 
wastewater evaporation ponds. Samples at 6 meter 
depth were collected monthly from five industrial wastewa-
ter evaporation ponds, over a forty one month period. The 
abundance of SRB was quantified by qPCR, with the tempera-
ture at same depths also being recorded. Bar heights repre-
sent means based on average samples of all five industrial 
wastewater ponds, while error bars represent standard devi-
ation.
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applicable for SRB monitoring in harsh environmental
niches, such as highly saline industrial wastewaters. Simi-
lar seasonal dynamics of SRB in mudflats of the Seine
estuary, i.e. with higher abundance and activity being
detected during the early summer, was demonstrated by
Leloup et al. [17], using competitive PCR analysis of the
dsrAB genes. These authors also suggested that SRB
appeared to be mainly controlled by physical-chemical
parameters (e.g. temperature and dissolved organic car-
bon concentration) and the topographic evolution of the
mudflat (i.e. erosion/deposit erosion).

Tree highly specific PCR primers were developed for quan-
tifying extreme halophilic SRB levels. The one forward
(RH-halo-1F) and two reverse (RH-halo-1R and RH-halo-
2R) primers (Table 1) for dsrA were designed based on
multiple alignments of dsrA of Desulfocella halophila DSM
11763 (AF418200), D. halophila (AF388211) and dsrA
sequences (e.g. EF052891, EF052876, EF052909 [13])
obtained from the SRB community present in the indus-
trial wastewater evaporation ponds. The two primer pairs,
RH-halo-1F/RH-halo-1R and RH-halo-1F/RH-halo-2R,
generated specific DNA products of 144 bp and 187 bp
found within the dsrA sequence, respectively (Table 1). All
primer sequences were verified by running an actual, as
well as virtual, PCR, with the amplifications being ana-
lyzed for expected product sizes, matching (as well as mis-
matching) positions within the dsrA, and primer dimer
formation, using a Amplify version 1.0, developed by Wil-
liam Engles, Department of Genetics, University of Wis-
consin. All primer sequences were examined by the
BLASTN (for a short input sequence), to confirm the
absence of any significant homology to other known DNA
sequences. Specific PCR products, obtained using
genomic DNA extracted from industrial wastewater sam-
ples as template provide reproducible distinct melting
points of 78°C and 80°C for the RH-halo-1F/RH-halo-1R
pair (amplifying a 144 bp fragment) and the RH-halo-1F/
RH-halo-2R pair (amplifying a 187 bp product) primers
respectively. Negative controls and amplification of DNA
from a non-SRB strain (i.e. E.coli) did not yield any PCR
products using either primer set.

Using plasmids harboring dsrA gene sequences from local
SRB community (RH.dsrA-208-49-18 (DQ662504) or
RH.dsrA-206-1 (EF052876)), we generated standard
curves by qPCR, using duplicate serial dilutions of known
amounts of circular plasmid DNA. Linearity and repro-
ducibility of the standard curves were tested using the RH-
halo-1F/RH-halo-1R and RH-halo-1F/RH-halo-2R primer
pairs. The standard curve for the dsrA gene with the two
sets of primers, behaved in a linear manner between 1.9 ×
103 and 1.9 × 108 copies per assay (0.95 × 102 to 9.5 × 106

copies ml-1) with slopes of -3.27 (R2 value > 0.99) and -
3.22 (R2 value > 0.99), respectively (Figure. 2). Plasmid
DNA was also mixed with filtrated (0.1 mm) and purified
(as mentioned above) industrial wastewater and com-
pared with plasmid DNA from a pure culture of E. coli. No
significant differences in slope were observed (data not
shown), ensuring the validity our approach to overcome
inhibition.

Examination of the amount of extreme halophilic SRB
within the highly saline industrial wastewater evaporation
ponds, quantified by qPCR with two sets of specific prim-
ers (RH-halo-1F/RH-halo-1R and RH-halo-1F/RH-halo-
2R), revealed low levels, from tens to few hundreds copies
of halophilic dsrA ml-1. The low level of halophilic SRB
(belonging to D. halophila), observed over five years after
artificial salination (August–October 2003), may result
from a suppression of halophilic SRB reproduction due to
increasing salinity (14–18%) and decreasing biogenic
organic matter loads. Known culturable halophilic SRB
are display optimal growth at NaCl concentrations, rang-
ing from 4 to 10% [7-10]. However, the steady state con-
ditions detected could be interrupted in future by
halophilic SRB species with higher optimal salinity
growth requirements. The upper limit of salt concentra-
tion for halophilic and halotolerant sulfate reducers
appear to be 24% NaCl, where these SRB are usually
incompletely degrade organic compounds due to bioener-
getic considerations [5]. Nevertheless, the more general
pair of specific primers (i.e. DSR1F and RH3-dsr-R) ena-
bles quantification of seasonal SRB fluctuations in dura-
ble highly saline industrial wastewater evaporation
ponds. These primers were derived based on aligned con-
sensus regions of dsrA and display specificity to a wide

Table 1: Oligonucleotides used for real-time PCR to amplify halophilic dsrA genes closely related to Desulfocella halophila.

Primer paira Sequence (5'-3')b Primer binding sitec Product size (bp)

RH-halo-1F GTTCTTcTtGGTACAAGAACAGA 192–214 144
RH-halo-1R GCATGAGTATTCACATCTT 317–335
RH-halo-1F GTTCTTcTtGGTACAAGAACAGA 192–214 187
RH-halo-2R GGAATTCCTGTGTCAAgAAaTGA 356–378

a. (F) and (R) correspond to forvard and reverse primers, respectively.
b. Bases that do not match appropriate sequences are shown as lowercase letters.
c. Positions within the Desulfocella halophila DSM 11763 (AF418200; Friedrich, 2002) dsrA open reading frame.
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range of SRB genera, such as Desulfovibrio, Desulfomonas,
Desulfatibacillus, Desulfomicrobium, Desulfobacterium, Des-
ulfosarcina, Desulfonema, Desulfofaba, Desulfomusa, Desul-
fotignum, Desulfotomaculum, Desulfacinum,
Desulfonatronum, Desulfoarculus, Desulfovirga and others
[13]. Due to artificial salination, significant reduction in
H2S concentrations (from ppm to ppb levels) in the
ponds area was observed [16]. This low level of H2S has
been maintained over five years, which indicates a possi-
ble inhibition of SRB activity in the highly saline (14–
18% NaCl) wastewater evaporation ponds, despite SRB
reproduction, as inferred from increasing of dsrA copy
numbers, as detected by qPCR. In addition, phylogenetic
comparison (the sequences compared were cloned and
sequenced as previously described [13,16]) of 41 dsrA
sequences (EF052874–EF052921) (amplified using
DSR1F/DSR4R primers) and 39 dsrA sequences
(FJ231216–FJ231254) (amplified using DSR1F/DSR10R
primers [18]) respectively retrieved from the industrial
wastewater evaporation ponds in 2005 and 2007 (both
after salination) did not indicate any significant exchange
in the SRB population (Figure. 3; phylogenetic tree was
constructed by Neighbor-Joining method [19], bootstrap
probabilities [20] with the Mega package [21]). Neverthe-
less, the diversity of SRB from 2007 was lower than in
2005. Indeed, sequences with relative homology to D.
halophila, Desulfovibrio longus and Desulfovibrio simplex
were not found, although qPCR performed with specific
primers continuously detected basal levels of D. halophila.
Our qPCR approach indicates the presence of a dynamic

SRB community in these extreme ecosystems, with sea-
sonal fluctuations related to temperature changes and to
pronounced waste disposal incidents. This method has
proven itself to be a reliable means of monitoring SRB in
a straight manner so as to provide early warning for possi-
ble sulfide production and subsequent prevention of
potential corrosion or odor nuisances.

Abbreviations
SRB: Sulfate-reducing bacteria; qPCR: quantitative real-
time PCR; dsrA: dissimilatory sulfIte reductase; w/v:
weight per volume.
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