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Abstract
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental
conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes
of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes
both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as
it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS
expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined
24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS
are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting
multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph
trehalose levels was found during the molt cycle. The current study provides the first evidence of
presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role
in energy metabolism and physiological adaptation.

Background
Trehalose, a non-reducing disaccharide is a primary
energy source in prokaryotes, yeasts, plants, and inverte-
brates. The accumulation of trehalose in anhydrobioses of
artemia, nematodes, and chironomids [1-3] implies a role
in physiological and biochemical adaptations in extreme
environmental conditions.

In insects, trehalose is the major hemolymph sugar that is
exclusively synthesized in the fat body in which hypertre-
halosemic hormone (HTH) positively regulates its pro-
duction. In addition, flight, feeding, and parasitic
infections in insects have been shown to produce hyper-
trehalosemia, i.e. an increase in trehalose in hemolymph
[4-6]. These findings further support trehalose as an

energy source and its involvement in physiological adap-
tation in insects.

Trehalose 6-phosphate synthase (TPS) is noted in insects
as a fused gene that codes two functional domains in tan-
dem: TPS, a homolog of Ost A of Escherichia coli, and treha-
lose 6-phophate phosphatase (TPP), a homolog of Ost B
of E. coli. Drosophila TPS introduced into human HEK-293
cells increased hypoxia tolerance by which elevated treha-
lose reduced protein aggregation under hypoxia [2,7].
This result indicates two domains of TPS and TPP are
active. However, a relationship between the level of TPS
expression and TPS enzyme activity resulting in the
increase in trehalose production has not been described in
insects.
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In contrast to hypertrehalosemic response under stress
and during flight activity in insects, the increase in glucose
level in hemolymph (i.e. hyperglycemia) of crustaceans
has been described during their initial physiological adap-
tation to stressful environments [8-15]. Lipopolysaccha-
ride (LPS) injection, an accepted method for mimicking a
pathogen infection, also induced hyperglycemia through
modulating the level of crustacean hyperglycemic hor-
mone [13]. The glycogen present in many crustacean tis-
sues, including hemocytes, is tacitly accepted as the source
of this hyperglycemia. Previous reports of the involve-
ment of trehalose in osmoregulation and cold adaptation
in crustaceans [16,17] and the ubiquitous abundance of
trehalose in insect hemolymph as an energy source and its
protective roles under stress emphasize the importance of
this molecule in invertebrates. Therefore, we investigated
the presence of TPS gene and trehalose in the blue crab,
Callinectes sapidus, the population of which has been dras-
tically declining in the Chesapeake Bay [18], in order to
better understand the role of this sugar in energy metabo-
lism during molt cycles and physiological adaptation
under stressful conditions. Particularly, in an attempt to
define an adaptive role of trehalose in a different physio-
logical status of C. sapidus, we challenged animals with
LPS that generally induced the response of a pathogen
infection as well as the stress response of hyperglycemia in
crustaceans [13,15]. We demonstrated hypertrehalosemic
and hyperglycemic responses by LPS injection into the
animal that was accompanied by increases in TPS expres-
sion and TPS enzyme activity in hemocytes. A relationship
between TPS activity in hemocytes and the level of hemo-
lymph trehalose during a molt cycle was established.

Results and discussion
Phylogenetic tree analysis of multiple sequence alignments 
of TPS gene
CasHemoTPS (GenBank accession no. EU679406) con-
sisting of 755 amino acid encodes a putative TPS and a
TPP domain in tandem. Phylogenic tree analysis of multi-
ple sequence alignments of TPS gene revealed that C. sap-
idus Hemocytes TPS (CasHemoTPS) is closely related to
those of insects, forming a separate group from E. coli, Sac-
charomyces cerevisae, and Ulva prolifera (Fig. 1) [19]. The
TPS gene in arthropods appears to be a fused gene of a
homolog of Ost A and Ost B in E. coli.

Spatial distribution of TPS gene expression in various 
tissues of C. sapidus
cDNAs of various tissues prepared from an adult male and
female C. sapidus were tested for the TPS expression. As
shown in Fig. 2, TPS expression was ubiquitous in all the
tissues of both sexes of adult crabs, indicating that all
these tissues could produce trehalose. It appears that mul-
tiple isoforms of TPS genes are present in tissues of the
blue crab, as three of these, coding both TPS and TPP,
have already been identified (unpublished observation).
This wide distribution of TPS gene in crab tissues is sur-
prising in contrast to what has been described in insects.
In insects, the fat body is known as the exclusive biosyn-
thetic site of trehalose [4,20,21]. After synthesis in the fat
body, trehalose is released into hemolymph and serves as
a major hemolymph sugar for energy required during
flight.

Phylogenetic tree analysis of deduced amino acids of TPS including Callinectes sapidus hemocytes (EU679406), Spodoptera exigua (ABM66814), Helicoverpa armigera (AAY87162), Locusta migratoria (ABV44614), Drosophila melanogaster (NP608827), Escherichia coli (ABU24467), Saccharomyces cerevisiae (P38427), and Ulva prolifera (ABG75732)Figure 1
Phylogenetic tree analysis of deduced amino acids of TPS including Callinectes sapidus hemocytes (EU679406), Spodoptera exigua 
(ABM66814), Helicoverpa armigera (AAY87162), Locusta migratoria (ABV44614), Drosophila melanogaster (NP608827), Escherichia 
coli (ABU24467), Saccharomyces cerevisiae (P38427), and Ulva prolifera (ABG75732). The neighbor-joining tree was constructed 
and bootstrapped (1000 iterations) using Robust Phylogenetic Analysis for the Non-Specialist [19]. Bootstrap values are noted 
on the branch and the scale bar (= 0.4) represents fixed mutations per amino acid position.
Page 2 of 8
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU679406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU679406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABM66814
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAY87162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABV44614
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP608827
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABU24467
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=P38427
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABG75732
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU679406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABM66814
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAY87162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABV44614
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP608827
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABU24467
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=P38427
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABG75732


Saline Systems 2008, 4:18 http://www.salinesystems.org/content/4/1/18
The effect of LPS on the expression of TPS, TPS activity 
and trehalose levels
Animals were challenged by the injection of 1 μg LPS to
test the response of trehalose. The resting level of treha-
lose in hemocytes was higher than in hemolymph: 3.5 ±
0.3 mg (n = 6) (Fig. 3A) and 1.1 ± 0.1 mg/ml (n = 6),
respectively. In contrast, the level of glucose was higher in
hemolymph than in hemocytes: 180 ± 14.6 μg/ml (n = 6)
and 70 ± 10 μg/mg protein in hemocyte extracts (n = 6),
respectively (Fig. 3B). Overall, the concentration of treha-
lose was higher than glucose in both hemolymph and
hemocytes: 6 and 50 fold, respectively, suggesting that tre-
halose is a major sugar in crab hemolymph as in insects
[4,21]. The intracellular level of trehalose was increased
~2.5 fold in response to the LPS challenge, while a modest
1.5 fold elevation of glucose was found. LPS injection
after 24 h did not cause general hypertrehalosemia or
hyperglycemia in hemolymph in C. sapidus, although it
was reported that a much higher dose of LPS induced
hyperglycemia after 2 h in other crustacean species
[13,15]. LPS induced a significant 2.5 fold increase in
HemoTPS mRNA, a three fold increment of TPS activity,
compared to those of the controls (Figs. 3C and 3D). This
could be responsible for the increase in trehalose levels in
Fig. 3A. A slight change (130%) in the level of trehalase
(Treh) mRNA that breaks down trehalose into two glucose
molecules is responsible for the modest rise (1.5 fold) in
intracellular glucose. The basal level of TPS mRNA in
hemocytes was ~100 fold less than that of Treh.

Our result demonstrates that hemocytes possess TSP and
Treh for the synthesis and metabolism of trehalose. More
importantly, they modulate cellular trehalose levels for
physiological and biochemical adaptation under LPS
challenge, through the dynamic regulation of the expres-
sion of TPS and TPS enzyme activity. Furthermore, our
data indicate that C. sapidus expresses TPS in multiple tis-
sues, in contrast to insects where the fat body is consid-
ered the exclusive biosynthesis site of this sugar.
Considering trehalose is the major blood sugar, it is also
likely to be involved in crustacean hyperglycemia. We
anticipate its ubiquitous presence in most if not all crusta-
cean hemolymph with similar functions as those found in
insects.

Levels of TPS activity in hemocytes and trehalose in 
hemolymph during a molt cycle
Concentrations of trehalose in hemolymph of C. sapidus
showed a bimodal pattern that exhibited two peaks dur-
ing molt cycle, at early ecdysis and post ecdysis C1–3 (Fig.
4). The lowest level of trehalose (0.65 ± 0.05 mg/ml
hemolymph, n = 8) was measured at stage A during and
after the occurrence of the largest water intake occurred
[22,23]. The fluctuation of TPS activity in hemocytes was
also noted during the molt cycle from the lowest at inter-
molt to the highest at postmolt stage B: 0.3 ± 0.08 μmol/
h/mg protein in hemocyte extracts (n = 12) and 1.98 ±
0.74 μmol/h/mg protein in hemocyte extracts (n = 7),
respectively. TPP enzyme activity of HemoTPS was deter-
mined only at intermolt by measuring [Pi] in the same
samples that were prepared for TPS activity. The activity of
TPP was slightly high: 0.78 ± 0.41 μmol [Pi]/h/mg protein
in hemocyte extracts (n = 5), however, this value was not
significantly different from that of TPS activity. In general,
TPS activity was elevated at premolt and peaked at stage B,
which correlates with the highest concentration of treha-
lose noted at stage C1–3. The level of trehalose and TPS
activity at the postmolt stage imply a possible involve-
ment of this sugar in chitin synthesis, as found in insects
[24]. Chitin synthesis is required for cuticle hardening
and the calcification process in the exoskeleton of animals
after ecdysis.

Conclusion
We isolated, for the first time in crustaceans, the cDNA
sequence of the TPS gene coding functional and active
domains of TPS and TPP in hemocytes of C. sapidus where
its expression was widespread in most tissues. LPS injec-
tion into animals, mimicking the induction of internal
stress, stimulated the expression and enzyme activity of
TPS in hemocytes, resulting in the increase in intracellular
trehalose in hemocytes. Our results provide evidence of
the presence and a possible adaptive function of trehalose
in energy metabolism and stress response of decapod
crustaceans.

Spatial distribution of TPS gene in cDNAs of various tissues of adult male and female of C. sapidusFigure 2
Spatial distribution of TPS gene in cDNAs of various tissues 
of adult male and female of C. sapidus. TPSF2 and TPSR1 
primers as listed in Table 1 was used for PCR amplification 
with 12.5 ng of total RNA equivalent of each tissue. Arginine 
kinase served for a reference gene. Lane 1: eyestalk, 2: brain, 
3: thoracic ganglion, 4: antennal gland, 5: gill, 6: hindgut, 7: 
heart, 8: chelae muscle, 9: hypodermis, 10: testis (A) and 
ovary (B), 11: hepatopancreas, and 12: Y-organ.
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The effects of LPS injection after 24 h on the levels of intracellular glucose, trehalose, TPS enzyme activity, and the expressions of TPS and Treh in hemocytesFigure 3
The effects of LPS injection after 24 h on the levels of intracellular glucose, trehalose, TPS enzyme activity, and the expressions 
of TPS and Treh in hemocytes. A) Trehalose: open bar at t = 0 h, solid bar at 24 h; B) Glucose: open bar at t = 0 h, solid bar at 
24 h; C) TPS enzyme activity at 24 h; and D) expressions of TPS and Treh at 24 h: solid bar = TPS; open bar = Treh. Data is pre-
sented as mean ± 1 SE (n = 5–8) of trehalose in mg/mg protein in hemocyte extracts, of glucose in μg/mg protein in hemocyte 
extracts, of TPS enzyme activity in μmol/h/mg protein in hemocyte extracts and TPS and Treh expressions in copy number/μg 
total RNA. Statistical significance at P < 0.05 = *, at P < 0.05 = **, at P < 0.001 = ***.
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Materials and methods
Animals
Juvenile blue crabs, C. sapidus (20–30 mm carapace
width), were received from the blue crab hatchery in the
Aquaculture Research Center, Center of Marine Biotech-
nology (University of Maryland Biotechnology Institute,
Baltimore, MD) and reared as described [25].

5', 3' RACEs of C. sapidus TPS gene
Hemocytes were harvested from 1 ml hemolymph with-
drawn in a sterilized marine anticoagulant (filtered
through 0.22 μm membrane) at 1:1 ratio and immedi-
ately spun at 800 g for 10 min 4°C. After discarding the
plasma, the pelleted cells were washed once in 100 μl of
anticoagulant and re-centrifuged as above. The washed
hemocytes were homogenized and total RNA extraction
and quantification were carried out by following the pro-

cedures as described [26]. Degenerate primers of TPS were
generated based on the conserved region of insect genes
listed in GenBank using a multiple alignment program,
CLUSTALW http://www.genome.jp).

The synthesis of 3' RACE cDNA of total RNA of hemocytes
was carried out using GeneRacer™ (Invitrogen), while 5'
RACE cDNAs was produced using SMART cDNA synthesis
kit (BD Biosciences). Touchdown PCR was employed for
initial amplification of TPS: dF1 (5'TTYGAYTCYTAYTA
YAAYGG3') and dR1 (5'TCDCCRGCDCCRGCRAAD
GG3'). The cDNA was amplified with Advantage Taq
polymerase (BD Biosciences) at the following PCR condi-
tions: after initial denaturation for 2.5 min at 94°C, 3
cycles each step at annealing temperatures: 47°C, 45°C,
and 43°C and the final step at 48°C for 25 cycles. The
final amplification was achieved at annealing temperature

Changes in the levels of trehalose in hemolymph and TPS activity in hemocytes during molt cycleFigure 4
Changes in the levels of trehalose in hemolymph and TPS activity in hemocytes during molt cycle. Data is presented as mean ± 
1 SE (n = 8–15) of trehalose in mg/ml hemolymph (solid bar) and of TPS enzyme in μmol/h/mg protein in hemocyte extracts 
(open bar). Statistical significances at P < 0.05 marked as + (trehalose) or * (TPS activity) were determined using Student's t 
test by comparing the values at intermolt stage with each different molt stage. I.M = intermolt, P.M = premolt, E.E = early ecd-
ysis, L.E = late ecdysis, A = within 3 h after ecdysis, B = 1–2 days after ecdysis, C1–3 = 3–7 days after ecdysis, and I.M* = same 
as I.M.
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48°C. The touchdown PCR products served as templates
for the nested PCR of TPS with a primer combination of
dF2 (5' TTYTGGCCNYTNTTYCAYTCYATGCC 3') and dR2
(5'ATYT GRCARGCSACRAAYTC3') at 55°C annealing
temperature. For the TPS gene, the cDNA from hemocytes
produced a band with an expected size of 900 bp. The
cloning and sequencing procedures were as stated [27].
Based on the obtained C. sapidus sequences of TSP, the fol-
lowing gene specific primers (listed in table 1) were made
for the completion of 5', 3' RACE.

Spatial distribution of TPS in various tissues of C. sapidus
Tissues were collected from male and female crabs at
intermolt stage after they were anesthetized on ice as fol-
lows: eyestalk, brain, thoracic ganglion, antennal gland,
gill, hindgut, heart, chelae muscle, hypodermis, testis or
ovary, hepatopancreas, and Y-organ. Total RNAs were
extracted using TRIzol® (Invitrogen) and quantified with a
NanoDrop 1000 (Thermo Scientific). After treatment with
DNase I to eliminate genomic DNA contamination, one
μg of total RNAs were used for the first cDNA synthesis
with MMLV and random hexamers (Promega). Samples
of cDNAs (each 12.5 ng) were amplified with a combina-
tion of primers: forward, 5'ATGTTGGTGGAACACAATTC
AAGGAC3' and reverse, 5' TACAGAAGAGTCTCGGTA-
GAATGCA for TPS. Arginine kinase, a reference gene, was
amplified using the same primers as described [27]. The
PCR conditions were as follows: initial denaturation at
94°C for 2.5 min, 35 cycles at 94°C for 20 sec, 60°C for
20 sec, 70°C for 30 sec sec, and final step at 70°C for 5
min. PCR products were visualized by staining with ethid-
ium bromide after electrophoresis on a 1.5% agarose gel.

Lipopolysaccharide challenge
Prior to the injection of LPS or saline, 100 μl of hemol-
ymph was withdrawn from juvenile animals (70–90 mm,
carapace width) as described [27] to establish the resting
levels of glucose and trehalose in hemocytes. Animals in

the test group received 1 μg LPS (E. coli 0111:B4, Sigma)
in 100 μl crustacean saline, while control animals received
100 μl saline alone. 24 h after injection, 500 μl of hemol-
ymph were withdrawn in an anticoagulant at a ratio of 1:1
and immediately centrifuged as described above. The
hemocytes were re-suspended in ice cold DEPC treated
PBS or Tris buffered saline and homogenized. Half of the
samples were dedicated for estimating glucose, trehalose,
and TPS activity, while the rest were used for RNA extrac-
tion as described above. Hemocyte protein was deter-
mined using BioRad DC protein assay (BioRad).

Quantitative RT-PCR analysis (QRT-PCR)
The extraction and quantification procedures of total RNA
of hemocytes and cDNA synthesis were stated in Chung
and Zmora [27]. Standards for QRT-PCR were produced
as described [25]. Sample cDNAs (12.5 – 25 ng) were ana-
lyzed for the estimation of the expressions of TPS using
primers of QF: 5' ATGTTGGTGGAACACAATTCAAGGA
C3' and QR: 5' CTTTGTATAATCTAACCGATCCACTC3'
and the data were calculated as copy number/μg of total
RNA of hemocytes. The level of hemocyte trehalase (Treh,
GenBank accession no. EU679407) was quantified using
the following primers, QF: 5' GCAGAGAGTGGATGGG
A3' and QR: 5' CCCTGACAGCAGCAAGCCCTCA3'. The
expression levels of TPS and Treh were represented as copy
number/μg total RNA as described [26].

Estimation of glucose and trehalose in hemocytes
Glucose levels in hemocytes were determined using glu-
cose oxidase/peroxidase assay (Sigma) as described [28].
Trehalose concentration in hemocytes was estimated by
subtracting the amount of glucose from the values deter-
mined by anthrone assay, as this assay measures both sug-
ars [29]. Trehalose (Sigma) was used for the standard of
anthrone assay. The results were presented as μg glucose
or mg trehalose/mg protein in hemocyte extracts.

Two-step TPS activity assay
TPS activity in hemocytes was estimated using a modified
procedure that was previously described [30,31]. For the
first step of the synthesis of trehalose 6-phospate, 100 μg
of extracts from hemocytes was incubated in 200 μl final
volume of the first reaction mixture containing 50 mM
HEPES buffer (pH 7.1), 5 mM UDP-glucose (UDPG), 10
mM glucose-6-phosphate, and 12.5 mM MgCl2 at 35°C
for 30 min. In controls, glucose-6-phosphate was omitted.
The reactions were terminated with heat treatment at
100°C for 5 min and were centrifuged at 13,000 rpm for
5 min at room temperature. For the second step, the
supernatants (150 μl) were further incubated at 35°C for
10 min in the following reaction mixture (150 mM
HEPES buffer, pH 7.6, 2 mM phosphoenolpyruvate, 0.5
mM NADH, 5 U lactic dehydrogenase and 5 U pyruvate
kinase). Samples were cooled on ice for 5 min and briefly

Table 1: The list of primer sequences that was used for cloning of 
TPS gene and QRT-PCR

Primer sequences (5'-3')

TPS dR1 TCDCCRGCDCCRGCRAADGG
TPS dR2 ATYTGRCARGCSACRAAYTC
TPS 3dF1 TTYGAYTCYTAYTAYAAYGG
TPS 3dF2 TTYTGGCCNYTNTTYCAYTCYATGCC
TPSF1 ATGCCTGACAGAGCAACATTTCAG
TPSF2(=QF1) ATGTTGGTGGAACACAATTCAAGGAC
TPSR1 TACAGAAGAGTCTCGGTAGAATGCA
TPSR2(=QR) CTTTGTATAATCTAACCGATCCACTC
TPSR3 GCACGGAGTCTGGGTGGCTCTCA

'd' represents degenerate primers. Two forward primers of TPS F1 
and F2 were used for 3' RACE and three of TPSR1, R2, and R3 were 
for 5'RACE. Primers of QF1 and QR1 were used for QRT-PCR 
analysis.
Page 6 of 8
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU679407


Saline Systems 2008, 4:18 http://www.salinesystems.org/content/4/1/18
centrifuged for 13,000 rpm for 1 min. 100 μl of the super-
natant was placed into a 96 well plate, and the absorbance
was measured at 340 nm (Spectra M5, Molecular Device).
Known concentrations of UDP at 1000, 500, 250, 125,
and 62.5 nmol were treated as above and served for a
standard curve. TPS activity was calculated per μmol UDP/
h/mg hemocyte protein.

Trehalose 6-phosphate phosphatase (TPP) assay
In order to test the functionality of TPP domain of CasHe-
moTPS, the hemocytes were extracted in Tris-buffered
saline and TPP enzyme activity was measured by follow-
ing the procedure described in Klutts et al. [32]. The activ-
ity was calculated as μmol [Pi]/h/mg hemocyte protein.

Estimation of TPS activity in hemocytes during molt cycle
Hemolymph samples were collected from animals at molt
stages as described [33] and assayed as described above.
Hemocytes homogenized in 200 μl of ice cold PBS by son-
ication (Branson); the extracts were centrifuged at 14,000
rpm for 10 min at 4°C; and, the supernatants were col-
lected for the estimation of protein concentration as
described above.

Statistical analysis
Statistical significance was determined at P < 0.05 using
GraphPad InStat 3 program (GraphPad Software, Inc).

Abbreviations
TPS: trehalose 6-phosphate synthase gene; Treh: trehalase
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