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Abstract

Background: Aquaculture is one amongst the growing and major food producing sectors. Shrimp culture is one of
the subsectors of aquaculture that attracts more attention because of the economic interest. However, the shrimp
culture systems have been facing severe consequences and economical losses due to disease outbreaks. Risk of
disease outbreak can be combated with the application of probiotics. For economically viable production of such
probiotic products, the present study provides information on the optimization and partial purification of
bacteriocin produced by a goat milk isolate Lactobacillus sp. MSU3IR against the shrimp bacterial pathogens.

Results: Bacteriocin production was estimated as a measure of bactericidal activity (arbitrary Unit/ml) over the test
strains. The optimum culture conditions and media components for maximum bacteriocin production by
Lactobacillus sp. MSU3IR were: pH: 5.0, temperature: 30°C, carbon source: lactose; nitrogen source: ammonium
acetate; NaCl: 3.0% and surfactant: Tween 80. MRS medium was found to extend better bacteriocin production than
other tested media. Upon partial purification of bacteriocin, the SDS-PAGE analysis had manifested the presence of
two peptide bands with the molecular weight of 39.26 and 6.38 kDa, respectively.

Conclusion: The present results provide baseline trend for the statistical optimization, scale up process and efficient
production of bacteriocin by the candidate bacterial strain Lactobacillus sp. MSU3IR which could be used to replace

the usage of conventional chemotherapeutics in shrimp culture systems.
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Background

Aquaculture has become a popular food producing sub
sector complement to agriculture. Diseases caused by
bacteria and viruses are considered to be an important
problem in the intensive rearing of molluscs, finfish,
lobster and shrimp [1]. During disease outbreaks, mor-
tality can be as high as 100% [2-5]. Infections caused by
pathogenic strains belonging to the species Aeromonas
hydrophila, Vibrio harveyiV. parahaemolyticus, V.cholerae
and V. anguillarium cause traumatic losses in the culture
of molluscs, fish and shrimp [2,6-9]. Antibiotics have been
widely used to control this problem. In recent years, the
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therapeutic use of antibiotics against bacterial infection is
very much restricted in aquaculture due to its residual ef-
fect and development of resistance in bacteria. Hence, the
probiotics are extensively used for disease management in
aquaculture.

The use of probiotics is prevalent in the aquaculture
industry (particularly in shrimp culture) as a means of
controlling disease, improving water quality by balancing
nutrient (e.g., nitrogen and phosphorus) availability and
replacing the use of antibiotics and disinfectants in some
cases [10-13]. Probiotics are known to block pathogens
by disrupting their virulent gene expression, attachment
and cell to cell communication [14]. Probiotic bacteria
can also compete with the pathogens for available space
and nutrients at host surfaces [15,16]. Many probiotic
strains produce antimicrobials, such as lytic enzymes,
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iron-chelating compounds, antibiotics, hydrogen perox-
ide, organic acids and bacteriocins [17,18]. Bacteriocins
are small peptides that disrupt the integrity of bacterial
cell membranes [19,20]. As an alternative tool to control
pathogenic bacteria, antimicrobial peptides or bacterio-
cins are recently being considered. Lactic acid bacteria
(LAB) are one of the major resources for bacteriocin
biosynthesis.

LAB are comprised of at least ten genera according to
taxonomic revisions representing Aerococcus, Carnobac-
terium, Enterococcus, Lactobacillus, Lactococcus, Leuco-
nostoc, Pediococcus, Streptococcus, Tetragenococcus and
Vasococcus [21]. They are widely used as starter cultures
in a variety of food fermentations. It is well known that
many lactic acid bacteria show antagonistic activities
against other bacteria, including food spoilage organisms
and food borne pathogens. There are several different
mechanisms responsible for this inhibition. In most cases,
the inhibition is caused by the production of organic acid,
hydrogen peroxide and bacteriocins [22,23].

Several reports have shown that complex media and
well controlled physical factors, such as temperature and
pH are required to obtain optimal bacteriocin produc-
tion [24-27]. Bacteriocin production can be influenced
by medium composition and growth phase of micro-
organism [28]. The production of bacteriocins is usually
studied on complex rich media and the most currently
evaluated parameters are the concentration of the carbon
source, complex nitrogen source and Tween 80 [29,30]. In
the light of the above statements, lactic acid bacteria
(probionts) and their products (bacteriocins) could be an
eco-friendly antimicrobials for substituting the commer-
cial and synthetic antibiotics in aquaculture. However,
optimization of culture media for efficient production of
bacteriocin that mitigate the growth of shrimp pathogens
are under researched. Hence, the present attempt has
been undertaken to investigate the influence of various
culture conditions and media components on bacteriocin
production by Lactobacillus sp. MSU3IR.

Results and discussion

Aquaculture operation alleviates protein shortage and
supplies high quality animal to human beings. Also, an
environmentally sound and sustainable extensive aqua-
culture provide employment opportunities and generates
income for the people [1]. Shrimp culture scored the
major part of the economy across the world. But one of
the main obstacles in shrimp culture is disease prevalence.
Use of probiotic bacteria to prevent or reduce the risk of
diseases is receiving attention as an alternative to anti-
biotics [11,31,32]. Evaluation of probiotic bacteria capable
of producing bacteriocin is becoming an area of rigorous
research in several sectors of human nutrition, in animal
husbandry and in fish farming [33]. In this context, the
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present investigation was undertaken to optimize the bac-
teriocin production by Lactobacillus sp. MSU3IR with
varying culture conditions and media components for its
further application in the field of aquaculture.

Lactobacillus strains

The Lactobacillus load of goat milk was ranged from
613.0 + 6.53 to 96.3 + 5.73 CFU/ml in 10™ to 10™ dilution
respectively [Table 1]. In total, five Lactobacillus strains
were isolated on MRS agar plates.

Screening of bacteriocin production

The isolated Lactobacillus strains were screened for an-
tagonistic activity against indicator strains by the double
layer method. Amongst the five strains tested, the candi-
date bacterium had maximum bioactivity as indicated by
the formation of large and clear zone around the colony.
With respect to the growth curve, the bacteriocin pro-
duction by the candidate bacterium was high at the end
of stationary phase (48h; data not shown). A similar
trend of maximum accumulation of bacteriocin during
the stationary phase of growth of Carnobacterium
piscicola isolated from marine salmonids Salmo salar
was reported [34,35].

Results indicated that the bioactivity of cell free neutra-
lized supernatant (CFNS) was lost during the treatment
with proteinase K, a-chymotrypsin and trypsin whereas
catalase had not altered the antagonistic property of CENS.
Thus, it confirmed the presence of bacteriocin in CENS of
candidate bacterium. Accordingly, numerous investigators
have shown that bacteriocin activity is lost upon treatment
with pepsin, trypsin or a - chymo trypsin because of de-
naturation [22,33,36,37].

Furthermore, this potent bacterium was subjected to
molecular characterization using 16S rRNA sequencing.
The phylogenetic position of candidate bacterium with
BLAST analysis inferred 96% similarity to Lactobacillus sp.
Furthermore, the 16S rRNA sequence of candidate bacter-
ium showed 53.1% GC content with 1371 bp in length and
it has been deposited in GenBank [J[N561696], NCBI, USA.
Phylogenetic analysis revealed that, 16S rRNA sequence of
the candidate bacterium has 100% similarity with the
existing stain Lactobacillus casei AB605428 [Figure 1].

Table 1 Enumeration of Lactobacillus load (CFU/ml) in
Indian goat milk

Dilution factor Plate 1 Plate 2 Plate 3 Mean + SD
10" TNTC TNTC TNTC -

102 TNTC TNTC TNTC -

107 605 621 613 6130 + 6.53
10° 311 281 290 294.0 + 12.56
10° 97 103 89 96.3 + 573
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Figure 1 Phylogenetic tree of the candidate bacterium Lactobacillus sp. MSU3IR.

Optimization of culture condition

Subsequent study was carried out to optimize the bac-
teriocin production at the end of stationary phase (48h)
by Lactobacillus sp. MSU3IR and the bacteriocin pro-
duction was measured in terms of antagonistic activity
(AU/ml). The environmental factors, such as pH and
temperature has to be optimized for maximum bacteri-
ocin production. Likewise, the bacteriocin production
was enhanced by culture conditions optimization in L.
casei [38] and Leuconostoc mesenteroides [39].

Among the tested pH, the maximum bacteriocin
production in terms of antagonistic activity was recorded
at pH 5.0 and it ranged from 410.4 + 2.37 to 649.2 +
5.18 AU/ml. However, further increase in pH found to
mitigate the bacteriocin production. The minimum
bacteriocin production was recorded at pH 9.0 and it
ranged from 2384 + 2.34 to 390.4 + 4.16 AU/ml against
the control range of 484.0 + 3.01 to 604.0 + 5.63 AU/ml
[Figure 2]. Two-way ANOVA revealed that bacteriocin
production due to indicator strains is not statistically sig-
nificant (F: 1.224; P>0.05) whereas it was statistically sig-
nificant (F: 6.123; P< 0.01) for medium pH. In consonance,
the optimum pH for bacteriocin production was usually
5.5 to 6.0 [25,26,40-43]. Comparably the optimum pH for
certain bacteriocin production was reported to be less than
5.0 [44-47].

Likewise, the higher bacteriocin production of 464.0 +
3.13 to 584.0 + 5.18 AU/ml was recorded at 30°C and
further increase in temperature markedly decreased bac-
teriocin production and the minimum bacteriocin yield
was within the range of 272.0 + 2.29 to 90.4 + 3.49 AU/ml
at 60°C over the control (344.0 + 2.45 to 473.2 + 5.47
AU/ml) [Figure 3]. Statistical analysis with two-way
ANOVA inferred that the bacteriocin yield was significant
due to indicator strains (F: 1.188; P< 0.05) but it was sig-
nificant (F: 5.479; P< 0.01) for incubation temperature.
Similarly, Moonchai et al. [48] also reported that the bac-
teriocin production by L. lactis was optimum at 30°C.

Optimization of media components

Lactose supplementation in culture media favored the
maximum bacteriocin yield by Lactobacillus sp. MSU3IR
in terms of bioactivity ranged from 542.4 + 3.49 to 685.2
+ 590 AU/ml. However, the minimum antagonistic ac-
tivity (313.2 £ 2.37 to 417.2 + 3.92 AU/ml) was recorded
in mannitol supplied medium over the control value
from 306.4 + 2.65 to 381.2 + 5.18 AU/ml [Figure 4].
Variation in bacteriocin production due to indicator
strains was not statistically significant (F: 0.593; P> 0.05)
besides, it was significant (F: 18.504; P< 0.001) for tested
carbon sources. In line with our results, Moreno et al.
[49] reported maximum bacteriocin yield by E. faecium
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Figure 2 Effect of various pH on bacteriocin production by Lactobacillus sp. MSU3IR.

BYV. parahaemolyticus

RZS C5 when cultured in MRS supplemented with lac-
tose (5% w/v).

However the effect of nitrogen source on bacteriocin pro-
duction by Lactobacillus sp. MSU3IR revealed that, ammo-
nium acetate favored the maximum bacteriocin production
(3544 + 2,65 to 592.0 + 4.37 AU/ml) and the minimum
bacteriocin production was noticed in sodium nitrate
(200.0 £ 2.07 to 406.4 + 3.35 AU/ml) supplied medium over
the control (318.4 + 2.33 to 364.0 + 3.14 AU/ml) [Figure 5].
Bacteriocin production by the candidate bacterium was sta-
tistically significant for indicator strains (F: 1.626; P< 0.05)
and nitrogen sources (F: 2.682; P< 0.05). Cell growth and
bacteriocin production was shown to be influenced by or-
ganic nitrogen source [50]. Accordingly, the present result
evidenced that the increment in bacteriocin production was
attributed with inorganic nitrogen source.

The maximum (408.0 + 3.15 to 614.4 + 5.00 AU/ml)
bacteriocin production by Lactobacillus sp. MSU3IR was

achieved with 3% NaCl supplementation. However, at 6%
NaCl concentration no bioactivity was detected over the
control (348.0 £ 2.69 to 414.4 + 4.25 AU/ml) [Figure 6].
Bacteriocin production due to indicator strains (F: 1.863;
P< 0.05) and NaCl concentrations (F: 39.543; P< 0.001)
was statistically significant. NaCl could alter the osmolar-
ity of the cell membrane of bacterium which favored the
more extrusion of bacteriocin from cell to media. In cor-
relation, Herranz et al. [51] also reported that bacteriocin
production by E. faceium P13 was high at 3% NaCl and
more than 7% of NaCl supplementation reciprocally af-
fected the bacteriocin production.

Bacteriocin production by candidate bacterium em-
phasized that, the higher bacteriocin yield of 405.2 +
3.97 to 1126.4 + 0.63 AU/ml was attained in the medium
supplied with Tween 80 compared to other tested sur-
factants. Incorporation of poly ethylene glycol (PEG) in
culture medium was found to terminate the bacteriocin

Arbitrary unit (AU/ml)

10 20 30

Temperature (°C)

40 50 60

BS. aureus OP. aeruginosa WA. hydrophila BYV. harveyi

B V. parahaemolyticus

Figure 3 Effect of various temperature on bacteriocin production by Lactobacillus sp. MSU3IR.
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Figure 4 Effect of various carbon sources on bacteriocin production by Lactobacillus sp. MSU3IR.

production and expressed no bioactivity than the control
(302.4 + 0.26 to 414.4 + 4.41 AU/ml) [Figure 7]. Vari-
ation in bacteriocin production due to indicator strains
(F: 1.043; P<0.05) and surfactants (F: 12.482; P< 0.001)
was statistically significant. Similar results were recorded
for plantaricin 428 [52], pediocin Actt [53], Lactacin B
[54] and Lactocin 705 [38]. Possibly Tween 80 could
change the surface tension of the producer cell thereby
increasing the rate of bacteriocin release from the cell
surface [52].

To ensure the maximum bacteriocin production, Lacto-
bacillus sp. MSU3IR was cultured in various media. The
maximum bacteriocin production (393.2 + 2.61 to 556.0 +
5.34 AU/ml) was recorded in the control (MRS medium)
and followed by Lactobacillus selection broth favoured
the bacteriocin production (341.2 + 2.36 to 473.2 + 3.96
AU/ml). However, the other production media resulted
in minimal bacteriocin yield [Figure 8]. Bacteriocin yield

due to indicator strains (F: 6.439; P< 0.01) and various
media (F: 10.676; P< 0.001) was statistically significant.
Earlier reports also evidenced that MRS medium is a
better medium for cell growth and bacteriocin produc-
tion than the other culture media [53,55,56].

Partial purification of bacteriocin

The baceriocin produced by Lactobacillus sp. MSU3IR
was partially purified by dialysis and the molecular mass
of the bacteriocin was determined by SDS-PAGE analysis.
Results inferred that, the bacteriocin preparation con-
tained two distinct bands weighing 39.26 kDa and 6.38
kDa on comparison with the molecular mass of standard
markers [Figure 9]. Supportively, the molecular mass of
bacteriocin produced by lactic acid bacteria have been
reported to fluctuate from 3.40 — 5.60 kDa to 10.00 —
45.00 kDa [57].
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Figure 5 Effect of various nitrogen sources on bacteriocin production by Lactobacillus sp. MSU3IR.
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Figure 6 Effect of various NaCl concentrations on bacteriocin production by Lactobacillus sp. MSU3IR.

Conclusion

Bacteriocin produced by the candidate bacterium, Lacto-
bacillus sp. MSU3IR showed good antagonistic activity
against the tested shrimp pathogens. Hence, ex situ ap-
plication of bacteriocin and Lactobacillus sp. MSU3IR as
probiont in shrimp culture systems are to be studied.
The optimization data on bacteriocin production pro-
vides basic information for further research on the stat-
istical optimization and industrial scale up process.

Methods

Lactobacillus strains

For the enumeration and isolation of Lactobacillus strains,
1 ml of milk sample was taken and serially diluted (10" to
10°). From each dilution, 1 ml of sample was taken and
pour plated on Man Rogosa Sharpe (MRS) agar plates.
After this, the plates were incubated at 37°C for 48 h and
the total number of individual viable colonies was counted
using a cubic colony counter. Then the morphologically

identical colonies were isolated and identified as Lactoba-
cillus sp. based on the physical and biochemical character-
istics described by Holt et al. [58].

Shrimp pathogens

Indicator bacterial strains (shrimp pathogens) were col-
lected from the microbial culture collections of Centre
for Marine Science and Technology, Manonmaniam
Sundaranar University, Kanyakumari District, Tamilnadu,
India.

Screening for bacteriocin production

The isolated Lactobacillus strains were screened indi-
vidually for bacteriocin production by the double layer
method as described by Dopazo et al. [59]. For this, the
\isolated Lactobacillus strains were individually simple
streaked on MRS agar plates and incubated at 37°C for
48 h which were overlaid using soft agar (0.8% agar) pre
mixed with separate indicator stains. Then the plates

1200

Arbitrary unit (AU/ml)

Control Criton X 100 Triton X 100 Tween 20 Tween 60 Tween 80 PEG

~

Surfactants

BS. aureus  OP. aeruginosa  BA. hydrophila ~ BYV. harveyi ~ BYV. parahaemolyticus

Figure 7 Effect of various surfactants on bacteriocin production by Lactobacillus sp. MSU3IR.
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Figure 8 Effect of various production media on bacteriocin production by Lactobacillus sp. MSU3IR.

were incubated at 37°C for 24 h. The Lactobacillus  bacteriocin production in MRS broth at 30°C in 48 h.
MSUSIR had better antagonistic activity against the indi- Hence, the incubation parameters were maintained for
cator strains by forming clear zone of inhibition around it. ~ analysis to use. The cells were then harvested by centri-

The potent strain Lactobacillus sp MSU3IR was selected ~ fugation at 4000 x g for 30 min and the culture super-
for further study and was found to produce enhanced natant was subjected to membrane filtration (0.22 pm).
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Figure 9 Molecular mass determination of bacteriocin produced by Lactobacillus sp. MSU3IR on comparison with molecular markers
in SDS-PAGE.
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Afterwards, the supernatant was neutralized using 3N
NaOH. The resultant cell free neutralized supernatant
(CENS) was treated individually with enzymes, such as pro-
teinase - K, a — chymotrypsin, trypsin and catalase (Sigma,
India) at pH 7.0 and temperature 37°C for 2 h in order to
check whether the product is bacteriocin. The enzyme ac-
tivity was terminated by heating the CENS at 100°C for 10
min and then evaluated for bioactivity [60]. The potent
candidate bacterium was characterized using the molecular
tool, 16S rRNA sequencing.

16S rRNA sequencing

The extraction of genomic DNA of the candidate strain
was performed according to the method of Rainey et al.
[61]. 16S rRNA gene was amplified using universal
primers with the following PCR conditions. The DNA
sequence was initially denatured for 5 min at 95°C and
annealing of primer to the templates was achieved at 55°C
for 30 Sec. Then the samples were maintained at 80°C to
allow for hot start conditions and the addition of 5 pl of
enzyme solution containing 1 U of Taqg DNA polymerase
in the 1x reaction buffer. PCR was performed with 40
thermal cycles under the standard high-stringency condi-
tions. A 10-min final extension at 72°C was performed at
the end of the cycling steps, and then samples were
maintained at 4°C. The PCR product was sequenced
using the genetic analyzer (Applied bio systems, USA).
The comparison of 16S rRNA gene sequence of the can-
didate strain and the 16S rRNA sequences of other
Lactobacillus species was done by using national center
for biotechnology information — basic local alignment
search tool (NCBI-BLAST) database, then the respective
gene sequence of the candidate bacterium was deposited
in NCBI and the accession number (JN561696) was
obtained. The reference gene sequences were retrieved
from NCBI GenBank database. All the sequences were
aligned using the multiple sequence alignment program
CLUSTAL-X 2.0.12 [62]. Phylogenetic tree was
constructed using MEGA 4.0 program by following the
method of Neighborhood Joining (NJ) described by Saitou
and Nei [63].

Agar well diffusion assay

Bioactivity/production of the bacteriocin by the candi-
date bacterium was detected using agar well diffusion
assay following the method of Tagg and McGiven [64].
In this assay, 25 pl of CENS was placed on each well of
Muller Hinton agar plates which was previously overlaid
with approximately 5 ml soft agar (0.8% agar). Soft agar
was pre mixed individually with shrimp pathogens that
were cultured for 24 h. Then the plates were incubated
at 37°C for 24 h and the antagonistic activity in arbitrary
unit/ml (AU/ml) was calculated [65] as a measure of
bacteriocin production.
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Diameter of the zone of clearance (mm) x 1000
AU/ml =

Volume taken in the well (1)

Composition of production medium

The production medium used in this study is MRS
medium and its composition (g/l) is as follows: protease
peptone: 10.0, beef extract: 1.0, yeast extract: 5.0, dex-
trose: 20.0, polysorbate 80: 1.0, ammonium citrate: 20.0,
sodium acetate: 5.0, magnesium sulphate: 0.1, manga-
nese sulphate: 0.05 and dipottasium phosphate: 2.0 at a
final pH of 6.5 + 0.20.

Optimization of culture conditions

The influence of pH on bacteriocin production by the
Lactobacillus sp. MSU3IR was examined. For this ex-
perimental pH, such as 4.0, 5.0, 6.0, 7.0 (control), 8.0
and 9.0 were fixed using 1IN NaOH and 1N HCI in the
culture medium. Similarly, bacteriocin production with
the candidate bacterium was optimized by varying the
incubation temperature individually viz., 10, 20, 30 (con-
trol), 40, 50 and 60°C. All the flasks were then aseptically
inoculated with Lactobacillus sp. MSU3IR and kept in
an orbital shaker (120 rpm) for 48h. Afterwards, the
CENS was collected from each flask by centrifugation
and membrane (0.22um) filtration. The bacteriocin pro-
duction in terms of antagonistic activity (AU/ml) was ex-
amined against different shrimp pathogens by agar well
diffusion assay.

Optimization of media components
To achieve the maximum bacteriocin production by
Lactobacillus sp. MSU3IR, the various media components
like carbon sources (fructose, maltose, sucrose, lactose,
mannitol and xylose individually at 1.0%) and nitrogen
sources (ammonium acetate, ammonium chloride, ammo-
nium nitrate, sodium sulphate, sodium citrate and sodium
nitrate individually at 1.0%) were substituted in the pro-
duction medium. Similarly, NaCl at 1.0, 2.0, 3.0, 4.0, 5.0
and 6.0% concentrations and surfactants (Criton X100,
Triton X-100, Tween 20, Tween 60, Tween 80 and Poly
Ethylene Glycol individually at 1.0%) were supplemented
in the production medium. Appropriate control (MRS
medium) was also maintained. Then, all the flasks were
inoculated aseptically with Lactobacillus sp. MSU3IR and
kept in an orbital shaker (120 rpm) at 30°C for 48 h. After
that the CENS was collected from each flask and exam-
ined for bioactivity to determine the bacteriocin produc-
tion over shrimp pathogens by agar well diffusion assay.
Likewise, to achieve the maximum bacteriocin produc-
tion, the Lactobacillus sp. MSU3IR was inoculated indi-
vidually in sterile production medium, such as Nutrient
broth, Luria broth, Lactobacillus selection broth, Tryptic
Soy broth, Brain-Heart infusion broth and MRS broth
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(control). Then the flasks were incubated at 30°C for 48 h
in an orbital shaker (120 rpm). The CENS was obtained by
centrifugation and membrane filtration. Then, the bio-
genic activity as a measure of bacteriocin production was
estimated against indicator strains.

Partial purification of bacteriocin

Bacteriocin produced by the candidate bacterial strain was
purified by the scheme of Bogovic-Matijasic et al. [66].
The candidate bacterium strain was inoculated into the
optimized medium and kept under optimum culture con-
ditions. After that the culture was centrifuged at 4000 x g
for 30 min at 4°C. Then, the cell free supernatant was pre-
cipitated by using 80% ammonium sulphate and settled
down by centrifugation at 7000 x g for 20 min at 4°C. The
pellet containing bacteriocin was suspended in 3 ml of 5
mM sodium phosphate buffer (pH 5.0) and dialyzed
against the same buffer for 24 h at 4°C. The retenate was
again tested for antagonistic activity against indicator
strains to ensure the bioactivity and stored (-20°C) in a
sterile container for further analysis. The molecular mass of
the dialysed bacteriocin was estimated through SDS-PAGE
[67] and gel documentation system (Syngene, UK).

Statistical analysis

All the experiments were done in six replicates and data
obtained in the present study were subjected to statis-
tical analysis, such as two way analysis of variance
(ANOVA) using SPSS 16.0 to determine the significant
variations between the test groups.
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