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Abstract

consequence of climate change.

Background: Mongolia's riverine landscape is divided into three watersheds, differing in extent of permafrost,
amount of precipitation and in hydrological connectivity between sub-drainages. In order to assess the vulnerability
of macroinvertebrate communities to ongoing climate change, we consider the taxonomic and functional
structures of stream communities in two major watersheds: The Central Asian Internal Watershed (CAIW) and the
Arctic Ocean Watershed (AOW), together covering 86.1% of Mongolia's surface area. We assess the consequences of
the hydrological connectivity between sub-drainages on the nestedness and distinctness of the stream
communities. And accordingly, we discuss the expected biotic changes to occur in each watershed as a

Results: Gamma and beta diversities were higher in the CAIW than the AOW. High community nestedness was
also found in the CAIW along with a higher heterogeneity of macroinvertebrate assemblage structure. Assemblages
characteristic of cold headwater streams in the CAIW, were typical of the drainages of the Altai Mountain range.
Macroinvertebrate guilds of the CAIW streams exhibited traits reflecting a high stability and low resilience capacity
for eutrophication. In contrast, the community of the AOW had lower nestedness and a combination of traits
reflecting higher stability and a better resilience capacity to disturbances.

Conclusion: Higher distinctness of stream communities is due to lower connectivity between the drainages. This
was the case of the stream macroinvertebrate communities of the two major Mongolian watersheds, where
connectivity of streams between sub-drainages is an important element structuring their communities. Considering
differences in the communities’ guild structure, hydrological connectivity and different magnitudes of upcoming
impacts of climate change between the two watersheds, respective stream communities will be affected differently.
The hitherto different communities will witness an increasing differentiation and divergent adaptations for the
upcoming changes. Accordingly, in an increasing awareness to protect Mongolia's nature, our results encourage
adapting conservation planning and management strategies specifically by watershed.
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Background

Over the last two decades human-caused climate change
has emerged as a leading threat to biodiversity conserva-
tion [1-3]. The projected consequences of climate
change on the aquatic biota have been a concern of both
conservation biologists [4] and ecologists [5] and often
showing a rather grim future. Climate change scenarios
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forecast global increases of temperature, annual pre-
cipitation, and atmospheric moisture [6] along with the
degradation and shrinkage of permafrost [7]. These
modifications will have severe consequences on fresh-
water ecosystems [8] and are expected to increase
threats on the conservation of freshwater biodiversity
[9]. Climate change is expected to operate on two differ-
ent spatial scales [10]. First, on a local scale, the modifi-
cation of thermal and hydrological regimes may alter
biotic interactions such as competitive behavior, popula-
tion dynamics and energy fluxes. Second, on a regional
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scale, abiotic forcing may lead to changes in constraints
on species distribution, leading to fragmented biotas and
reshaped niches. Given the important role of niche con-
servation in climatic tolerances, species ranges are
expected to shift [see, 11] to track climatic regimes to
which they are adapted. Intolerant species or those with
limited dispersal ability may be at risk of extinction.
Given the rapid rate of climate change, evolutionary
adaptation is less likely to occur, while the phenotype
plasticity of species will play the key role in preserving
populations.

To predict the response of communities to climate
change, we need first to understand how communities
are currently structured and regulated. The structure of
a stream invertebrate community is the result of several
multiscale filters representing both historical factors and
ecological constraints. The historical factors are consid-
ered to operate on a larger geographical scale and over
geological time periods; while the ecological constraints
are considered to operate mainly on the habitat scale
and on shorter time scales [12,13]. The dynamics of a
stream invertebrate community is highly dependent on
the structure and diversity of its guilds. Guild ecology
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examines communities by assigning each species to a
functional guild (i.e., groups of species that have com-
mon biological traits). Therefore, plasticity of species
phenotype and most probably intra-guild species diver-
sity will have major influences on the regulation and
conservation of a community as a functional unit. Guild
ecology has considerably increased our understanding of
community organization and functioning [12,14,15] and
has been proven reliable to study climate change scenar-
ios [12,16].

The impact of climate change on stream macroinver-
tebrate communities has been mainly studied in Europe
[16] and North America [5]. No large-scale studies have
been carried out in Central Asia, although global warm-
ing is severely affecting this region and particularly
Mongolia (see below for details). In this paper, 1) we de-
scribe the taxonomic and functional structures of the
stream macroinvertebrates communities of the two
major watersheds of Mongolia (see below for details).
These communities are to be used as a baseline to assess
potential upcoming changes facing the Mongolian
stream ecosystem. 2) Given the major differences in the
hydrological connectivity of drainages between the

500 km

the location of the Gobi Desert.

Figure 1 Map showing the Mongolian watersheds (Figure 1A) with the different drainages (light gray lines) and standing water-bodies
(dark gray areas). The bold circles (Figure1A) are the locations of the sampled stream-sites included in this study. Figure 1A shows the three
Mongolia watersheds separated by a bold lines (same bold lines are shown in Figure 1C), AOW is for the Arctic Ocean Watershed, CAIW is for the
Central Asian Internal Watershed and POW for the Pacific Ocean Watershed. The dashed lines (Figure 1A, CAIW watershed) show the 11
sub-drainages of the CAIW, four of them sampled in this study (marked by asterisk in Figure 1B). The light gray shading (Figure 1A, 1B) shows the
permafrost extent (above 50% permafrost content). Figure 1C shows the location of the major mountain ranges in Mongolia (dashed areas), and

Gobi Desert
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studied watersheds: we predict lower community dis-
tinctness due to higher dispersal routes in the watershed
having connected sub-drainages, versus more distinct-
ness in the watershed having isolated sub-drainages.
Hydrological connectivity is used here in an ecological
sense to refer to water-mediated transfer of organisms
[17] among the different sub-drainages of the watershed
(see below for details). Accordingly, 3) we discuss the
expected changes to occur, in the communities of each
watershed and their resilience capacities [sensu, 18].

Methods

Study region

Mongolia’s riverine landscape is structured in three
watersheds (Figure 1), two of them are open watersheds
and drain into the Arctic Ocean and the Pacific Ocean,
respectively; while, the third is a closed watershed and
drains into Central Asia. The studied region includes
drainages of the Arctic Ocean Watershed (AOW) and
the Central Asian Internal Watershed (CAIW) covering
a surface area equivalent to 86.2% of Mongolia (equiva-
lent to 1,438,267.7 km?). The AOW is bounded by Rus-
sia to the north, by the Hentei Mountain range to the
east and by the Hangai Mountain range to the south and
west. The CAIW is also bounded by Russia to the north,
and is separated from China by the Gobi Desert to the
south (Figure 1C).

The two studied watersheds are profoundly different:

1) The AOW covers only 20.6% of Mongolia’s surface
area yet receives 51% of the annual precipitation of
Mongolia while the CAIW covers 65.6% of
Mongolia’s surface area and receives only 12% of the
annual precipitation [19].

2) The AOW has a highly connected network of sub-
drainages that exit Mongolia by draining to the
north, providing about 50% of the water inflow to
Russia’s Lake Baikal (60% of Lake Baikal’s watershed),
while the CAIW has 11 disconnected sub-drainages
believed to be remnant of Tertiary and Quaternary
drainages [20]. Therefore, connectivity as expressed
in this study represents the connectivity between
sub-drainages within a watershed and via the stream
network. This connectivity contrasts one watershed
having one major stream network of sub-drainages
(i.e., the AOW) and one watershed having 11
disconnected sub-drainages (i.e. the CAIW), 4 of
these draining the Lake Uvs basin and the Altai
mountain range were sampled for this study
(Figure 1A, 1B). These 4 sub-drainages enclose the
majority of streams of the CAIW.

3) The AOW is located at the boundary of the Siberian
cryosphere, therefore having the highest permafrost
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extent in Mongolia (Figure 1B), while the permafrost
is less expanded in the CAIW and is mainly
restricted to high altitudes.

The database for this study was obtained from 114
streams (37 from the AOW and 77 from the CAIW)
sampled by the Mongolian Aquatic Insect Survey [http://
clade.ansp.org/entomology/mongolia/] during multiple
expeditions carried out in Mongolia from 2003 to 2010.
Each stream site was sampled once during the 8 years
timeframe. Sample sites in the AOW had a median ele-
vation of 1432 m a.s.l. (minimum: 702 m, maximum:
2215 m) and sample sites of the CAIW had a median
elevation of 2029 m a.s.l. (minimum: 955 m, maximum:
3087 m). This difference in altitudes of the stream-sites
can be considered as an uncontrolled bias as high alti-
tude streams from the AOW were scarce overall in the
watershed and the majority were dry during the sam-
pling expeditions. A recent sharp decrease of the glaciers
in the Hangai Mountains may have contributed to the
lack of summer-flow in the headwater streams of this
mountain range (JG personal observation). The frost-
free period in Mongolia extends on average from late
May to late August; therefore, all the sampling expedi-
tions were carried out in July.

At all sites the invertebrate communities were sampled
following a kick sampling protocol using a 500 pm net
mesh size and complying with the US EPA Rapid Bio-
assessment Protocol [21]. Invertebrates were sorted in
the lab under dissection microscopes and identified
using regional identification keys [22-27].

Effects induced by climate change

Temperature, precipitation and humidity patterns,
snow-cover decrease, glaciers melting and permafrost
thaw are considered to be the main abiotic elements
strongly affected by climate change in Mongolia. A sub-
stantial increase of the mean temperature by 1.6°C was
observed over a 60-year period in Mongolia (1940-2001)
[28]. In addition to the increase of temperature, patterns
of rainfall are considerably affected, causing locally dilu-
vial runoffs events. For example, Li ef al. [29] found that
the relative area affected by severe moisture deficit or
excess increased dramatically over Mongolia since 1970,
which can be related to the observed events of localized
extreme rainfall. This increase of temperature and the
change in moisture patterns are affecting the snow-cover
depth, and a negative correlation between snow-cover
depth and temperature is occurring over wide areas
from November to March [30]. In addition to the
changes in seasonal climatic elements, climate change is
affecting the long-lasting cryologic formations in Mon-
golia. Shrinkage of Mongolian glaciers has been con-
firmed by Kadota and Gombo [31] and the fragile state
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of the Mongolian permafrost [32] suggests major up-
coming changes.

These changes will be directly affecting the stream in-
vertebrate communities. For instance, water temperature
and thermal regimes regulate invertebrate population
growth, population dynamics and overall niche expan-
sion [33]. Increases in the rates of glacial melt and
permafrost thaw regulate surface runoffs and water infil-
tration, consequently affecting stream discharge regime
and therefore the structure of invertebrate communities
[see, 34,35]. Additionally, permafrost thaw and diluvial
runoffs events are expected to increase the input of
eroded particles to the stream system, consequently in-
creasing the siltation of the substrate and affecting the
stream water biogeochemistry [8] toward a general eu-
trophication of the stream system.

For these reasons, all biological traits deemed to be
sensitive to or to describe affinities to temperature, dis-
turbance, substrate structure, trophic status and eu-
trophication (Table 1) were used in this paper to
describe the stream macroinvertebrate metacommunities
of Mongolia.

Data analysis

Community structure analysis

The total number of taxa per watershed constitutes
gamma diversity. Since the numbers of sampled stream-
sites per watershed were not equal, richness accumula-
tion curves [36] were used to estimate total richness and
to reduce bias from differences in the sampling effort.
Accumulation curves were produced using the model
Chaol [37] available in Estimates 8.2.0 [http://purl.oclc.
org/estimates].

Beta diversity, between stream diversity, was used to
quantify the level of distinctness of the stream inverte-
brate communities at the watershed scale. Beta diversity
values between watersheds were compared using t-test,
(significance threshold 5%), followed by an analysis of
nestedness to assess the impact of rare species on the
community structure. Nestedness represents the degree
to which small assemblages of taxa are subsets to suc-
cessively larger assemblages and can be viewed as a
region-wide outcome of a taxa pool being filtered by
site-specific environmental constraints [12,38]. To quan-
tify the community nestedness across the two water-
sheds we used a nestedness temperature calculator.
Calculations were done on binary-matrices for each
watershed (159 taxa x 37 stream-sites and 159 taxa x 77
stream-sites), where a temperature value (7) of 0° shows
a perfectly nested distribution (rare taxa are in diversity
rich sites) and a T of 100° shows a random distribution
of the taxa. Matrix temperatures were tested for statis-
tical significance using a Monte-Carlo test (comparison
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to 999 randomly simulated matrices). Nestedness ana-
lysis was performed using NESTEDNESS software [39].
We excluded all rare taxa (i.e, taxa that occurred
once) and performed a Correspondence Analysis (CA)
to describe the structure of the metacommunities. The
CA was conducted on a reduced matrix of 100 taxa (59
taxa were removed) and 114 stream-sites. Prior to the
CA, data were transformed to logarithmic values (In
(x+ 1)) in order to reduce and normalize the variance.

Analysis of guild structure

Taxa were assigned to particular biological trait categor-
ies (Table 1) according to the database developed by
Tachet et al. [40]. The database was preferred for two
reasons: 1) a higher similarity between European and
Central Asian fauna when compared to other available
datasets (e.g. North American fauna), and 2) the
fuzzy coding used in this database is expected to
minimize potential analysis errors due to phenotypic
plasticity between Asian and European genotypes. Minor
additions to the database were made based on personal
communications from taxonomic experts mainly for
Plecoptera.

Biological traits were available for 69 of the 100 taxa
that occurred more than once in our data set. Therefore,
the analysis was computed on a matrix of 69 taxa and
114 stream-sites. Ten biological traits described in 43
categories were included in the analysis (Table 1), and
the affinities of taxa for the categories were coded in a
fuzzy coding of frequency distribution [15]. Fuzzy cod-
ing, as described by Chevenet et al. [41], allows taxa to
exhibit categories of each biological trait to different
degrees. This takes account of variation in trait expres-
sion between life stages and between individuals at each
life stage [42], and as we mentioned above, should
minimize errors due to phenotypic plasticity. We
analyzed the frequencies of the categories by a Fuzzy
Correspondence Analysis (FCA) [41]. The categories
were weighted by the log-transformed (In(x + 1)) abun-
dance of each taxon at a site subsequent to a CA (69
taxa and 114 stream-sites). Finally, the stream-sites were
clustered per watershed for an easier visualization of the
results.

All multivariate analyses (CA and FCA) were com-
puted using the ade4 package in R [43].

Results

Community structure

In total 159 taxa were identified from 114 stream-sites,
including 125 different genera (Table 2). Gamma diver-
sities were 80 for the AOW (37 samples) and 136 for the
CAIW (77 samples). The richness accumulation curves
corroborated these gamma diversity values and showed
near-saturation values of 100 and 178 stream samples in
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Table 1 Categories of biological traits used to describe macroinvertebrates life cycles and their affinities to
temperature, disturbance, substrate structure, trophic status and eutrophication

Traits Categories Expected Mechanisms
Maximal size (cm) 0.25-0.5 Disturbance due to frequent discharge fluctuation and siltation will favor small size invertebrates
QS_]—having a higher resilience capacity
P E—
24
4-8

Dispersal

Aquatic passive

Aquatic active

Aerial passive

Passive dispersal is expected to be more common when stream physical connectivity is high

Aerial active
Lifecycle duration <1 year Taxa having a short development cycle have a higher resilience capacity and therefore are more
>1year—ab|e to maintain populations in frequently disturbed environments
Potential number of life <1 Populations having more than one cycle per year have a higher resilience capacity adapted to
cycles per year 1 frequently disturbed environments
> 1
Current velocity (cm.s™) Null An increase in water discharge will favor organisms preferring medium to fast current velocities
Slow (<25)
Medium (25-50)
Fast (>50)
Trophic status Oligotrophic An increase of nutrient release by permafrost thaw will favor mesotrophic and eutrophic taxa

Mesotrophic

Eutrophic

Temperature preferendum

Cold (< 15°C)

Climate change will negatively affect the cold stenothermic taxa

Warm (> 15°C)

Eurythermic

Saprobity

Xenosaprobic

Oligosaprobic

In a eutrophic ecosystem, meso- and polysaprobic taxa are more likely to occur

a-mesosaprobic

-mesosaprobic

Polysaprobic

Substrate preferendum

Cobble

Gravel

Sand

Silt
Macrophytes

An increase of suspended particles and substrate siltation will increase the percentage of taxa
adapted to fine-grain substrates

Microphytes

Roots
Detritus
Mud

Feeding habits

Deposit-feeder

Shredder

Scraper
Filter-feeder

Predator

Eutrophication of the stream system will increase the percentage of deposit-feeder and
filter-feeder taxa

The expected mechanisms column indicates how these traits may affect the macroinvertebrate communities under a global warming scenario.
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Table 2 Taxa list and occurrences in the two watersheds, Table 2 Taxa list and occurrences in the two watersheds,
with n indicating the number of stream-sites sampled per  with n indicating the number of stream-sites sampled per
watershed watershed (Continued)
AOW CAIW Limnophila sp. Macquart, 1834 1 2
n=37 n=77 Lispe sp. Latreille, 1796 1 -
Annelida Metacnephia sp. Crosskey, 1969 4 25
Clitellata - 4 Muscidae - 4
Oligochaeta 15 29 Oreogeton sp. Schiner, 1860 - 2
Hirudinea 3 3 Pericoma sp. Walker, 1856 - 2
Arthropoda Philorus sp. Kellogg, 1903 - 1
Insects Coleoptera Prosimulium sp. Roubaud, 1906 3 25
Agabus sp. Leach, 1817 - 5 Rhabdomastix sp. Alexander, 1911 - 1
Berosus sp. Leach, 1817 1 - Rhaphium sp. Meigen, 1803 - 3
Bryothinusa sp. Casey, 1904 - 1 Simuliidae 1 -
Dytiscidae 3 3 Simulium sp. Latreille, 1802 9 30
Echinocnemus sp. - 1 Sulcicnephia sp. Rubtsov, 1971 11 20
Schonherr, 1843 Tabanus sp. Linnaeus, 1758 1 2
Enochrus sp. Thomson, 1859 - 1 Tipula (Arctotipula) sacra i} 1
Gyrinidae - 1 Alexander, 1946
Haliplidae - 1 Tipula (Arctotipula) sp. 11 23
Helophorus sibiricus - 1 Tipula (Arctotipula) sp. 1 - 5
Motschulsky, 1860 Tipula (Savtshenkia) sp. 1 -
Helophorus sp. Fabricius, 1775 - 2 Tioula (Tipula) sp. - 1
Hygrotus sp. Stephens, 1829 - 8 Tipula sp. Linnaeus, 1758 - 9
Laccophilus sp. Leach, 1815 - 1 Tipulidae - 1
gﬁfgg :SS igggnarki/ - 2 Wiedemannia sp. Zetterstedt, 1838 1 6
Oreodlytes sp. Seidlitz, 1887 - 6 Ephemeroptera
Staphylinidae ) ] Acentrella sp. Bengtsson, 1912 5 54
Diptera Ameletus inopinatus Eaton, 1887 - 3
Aedes sp. Meigen, 1818 ) : Ameletus sp. Eaton, 1885 8 26
Agathon sp. Rodor, 1890 i} 9 Baetis sp. Leach, 1815 28 69
Antocha sp. Osten Sacken, 1860 ) ] Baetopus sp. Keffermuller, 1960 2 12
Atherix sp. Meigen, 1803 1 i Baetopus trishae Waltz, 2002 - 3
Bezzia sp. Kieffer, 1899 i 1 Caenis sp. Stephens, 1835 2 3
Chelifera sp. Macquart, 1823 ) : Cinygmula sp. McDunnough, 1933 8 32
Chironomidac 35 5 Drunella sp. Needham, 1905 14 6
Chrysops sp. Meigen, 1803 ~ ] Ecdyonurus sp. Eaton, 1868 12 25
Clinocera sp. Meigen, 1803 » 3 Epeorus pellucidus Kluge, 1989 - 3
Corynoptera sp. Winnertz, 1867 - 1 Epeorus sp. Eaton, 1881 6 L
Deuterophlebia sp. Edwards, 1922 - 13 Ephemera sp. Linnaeus, 1758 ! _
Dicranota sp. Zetterstedt, 1838 14 33 Ephemerella lenoki Tshemova, 1952 - !
Dixa sp. Meigen, 1818 3 ) Ephemerella sp. Walsh, 1862 18 30
Dixella sp. Dyar & Shannon, 1924 - 2 ?: Qgrrr?gvgg{gfum ) 2
Ephydra sp. Fallen, 1810 _ ! Ephoron sp. Williamson, 1802 3 5
Eristalis sp. Latreille, 1804 - 3 Heptagenia sp. Walsh, 1863 - 5
Gymnopais sp. Stone, 1949 - 3 Heptageniidae . 5
geezﬁes’pigzegeletier & ! i Isonychia sp. Eaton, 1871 1 -
Hexatoma sp. Latreille, 1809 7 5 Leptophlebia sp. Westwood, 1840 4 -

Metretopus sp. Eaton, 1901 10 -
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Table 2 Taxa list and occurrences in the two watersheds, Table 2 Taxa list and occurrences in the two watersheds,
with n indicating the number of stream-sites sampled per  with n indicating the number of stream-sites sampled per

watershed (Continued)

watershed (Continued)

Parameletus sp. Bengtsson, 1908 - 1 Apatania sp. Kolenati 1848 7 13
Procloeon sp. Bengtsson, 1915 4 4 Arctopsyche sp. MclLachlan, 1868 4 2
Rhithrogena sp. Eaton, 1881 12 25 Asynarchus sp. McLachlan, 1880 12 19
Serratella sp. Edmunds, 1959 20 59 Brachycentrus sp. Curtis, 1834 17 60
Siphlonurus sp. Eaton, 1868 10 34 Brachycercus sp. Curtis, 1834 7 3
Hemiptera Ceraclea sp. Stephens, 1829 4 1
Arctocorisa sp. Wallengren, 1894 - 2 Cheumatopsyche sp. 1 -
Callicorixa sp. White, 1873 - 1 Wallengren, 1891

Cenocorixa sp. Hungerford, 1948 - 1 Clostoeca sp. Banks, 1943 > 10
Corixidae 5 2 Dicosmoecus sp. Mclachlan, 1875 4 20
Geridae 1 1 Ecclisomyia sp. Banks, 1907 7 12
Gerris sp. Fabricius, 1794 - 1 Glossosoma sp. Curtis, 1834 7 4
Glaenocorisa sp. Thomson, 1869 - 1 Goera sp. Stephens, 1829 > ?
Micronecta sp. Kirkaldy, 1897 - 1 Homaphylax sp. Banks, 1900 i} !
Saldula sp. Van Duzee, 1914 - 1 Hydropsyche sp. Pictet, 1834 2 3
Teloleuca sp. Reuter, 1912 - 1 Lepidostoma sp. Rambur, 1842 - 4
Megaloptera Limnephilus sp. Leach, 1815 - 3
Sialis sp. Latreille, 1802 10 B Micrasema sp. MclLachlan, 1876 2 -
Odonata Molannodes sp. MclLachlan, 1866 - 1
Lestes sp. Fabricius, 1798 B 5 Nemotaulius sp. Banks, 1906 2 2
Leucorrhinia sp. Burmeister, 1839 - 1 Oligostomis sp. Kolentai, 1848 ! _
Ophiogomphus sp. Fourcroy, 1785 1 - Philarctus sp. McLachlan, 1880 - 1
Plecoptera fg%tsln;)(/j/; 51pé3ROob|neau & 1 -
Agnetina sp. Klapélek, 1907 6 4 Psychomyiidae ] )
é/g\j\fg@eq/g;p' Stewart & ] . Rhyacophila sp. Pictet, 1834 1419
Allocapnia sp. Claassen, 1928 B 1 Triaenodes sp. MclLachlan, 1865 - 1
Amphinemura sp. Ris, 1902 1 1 Other Arthropoda

Arcynopteryx compacta - 2 Cladocera _ 4
Mclachlan, 1872 Gammarus sp. J. C. Fabricius, 1775 1
Arcynopteryx sp. Klapalek, 1904 - 22 Hydracarina 9 23
Chloroperlidae 1 - Mollusca

Diura sp. Billberg, 1820 - 8 Bivalvia 1 -
Isoperla sp. Banks, 1906 - 29 Coretus sp. Adanson, 1757 1 4
Leuctra sp. Stephens, 1836 1 - Gyraulus sp. Charpentier, 1837 2 10
Megarcys sp. Klapélek, 1912 - 1 Lymnaea sp. Lamarck, 1799 - 1
Mesocapnia sp. Rauser, 1969 - 5 Planorbidae 2 3
Nemoura sp. Latreille, 1796 - 10 Radix sp. Montfort, 1810 2 7
Pictetiella asiatica Zwick & - 1 Sphaeriidae 5 1
Levanidova, 1971 Nematomorpha

Skwala sp. Ricker, 1943 - 32 Gordiidae 1
Suwallia sp. Ricker, 1943 8 27 Gordius sp. Linnaeus, 1758 - 3
Suwallia teleckojensis Samal, 1939 - 2 Tricladida

Triznaka sp. Ricker, 1952 - 1 Euplanaria sp. Hesse 1897 B} 5
Trichoptera Platyhelminthes

Agapetus sp. Curtis, 1834 1 - Turbellaria 4 7

Anabolia sp. Stephens, 1837 1 1
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Figure 2 Gamma diversity accumulation curves showing the
saturation curves (bold line) of taxa diversity in both

watersheds (CAIW and AOW are the same abbreviations in
Figure 1).

the AOW and the CAIW, respectively (Figure 2). Fifty
seven taxa were common to both watersheds, while 23
taxa were exclusive to the AOW, constituting 28.7% of
the gamma diversity of this watershed; and 79 taxa were
exclusive to the CAIW constituting 58% of the gamma
diversity of this watershed. The differences in the contri-
bution of these exclusive taxa to the overall richness of
the watershed are a major difference between these two
watersheds. Beta diversity values were also significantly
different (p <0.001) between the two watersheds. Values
were higher at the CAIW having a median value of 124,
while the median value was 68 in the AOW. The nested-
ness analysis showed also that communities of the CAIW
had a higher nested structure than communities of the
AOW (T'=15.23 ° and 27.07 °, respectively; p <0.001).
Therefore, these 3 results show that the CAIW has a
higher heterogeneity of its stream communities when
compared to the AOW.

The first two axes of the CA expressed 15.3% of the
variance (Figure 3) with a total inertia of 3.69. The vari-
ability explained by the CA is significant considering the
high number of taxa included in the computation. The
overall distribution of taxa scores showed similar pat-
terns for the communities of the two watersheds. How-
ever one assemblage was more strongly associated with

Page 8 of 13

the CAIW. This assemblage of macroinvertebrates was
composed mainly of cold headwater taxa (Ameletus ino-
pinatus, Ameletus sp., Cinygmula sp., Deuterophlebia
sp.) and taxa adapted to intermittent stream flow (Aga-
bus sp., Arctocorisa sp., Hygrotus sp, Oreodytes sanmar-
kii). The other taxa of this assemblage were mainly
trout-stream type taxa, like Suwallia sp., Suwallia tele-
ckojensis, Isoperla sp., and Acentralla sp.. While 28
stream-sites out of 77 in the CAIW (= 36%) were corre-
lated to this assemblage (Figure 3B), only four stream-
sites out of 37 in the AOW (=~ 10 %) were correlated to
this assemblage (Figure 3C).

Analysis of ecological guilds’ structure

The FCA ordination of guild structure summarizes
38.8% of the overall variability with a total inertia of 0.88
(Figure 4). The variables having the highest correlations
of variables to axis 1 were maximal size (Figure 4A), life
cycle duration (Figure 4C), potential number of life
cycles per year (Figure 4D), feeding habits (Figure 4E),
current velocity (Figure 4G) and temperature preferen-
dum (Figure 4I). Those having the highest correlations
of variables to axis 2 were maximal size (Figure 4A),
current velocity (Figure 4G), substrate preferendum
(Figure 4F) and trophic status (Figure 4H). Thus, axis 1
contrasts small body size (see Figure 4A, < 1cm), multi-
voltine scrapers and deposit feeders (Figure 4C, 4E), giv-
ing lower site scores, with large bodied uni- or
semivoltine predators and shredders. Axis 2 represents a
gradient in tolerance of taxa to nutrient enrichment
(Figure 4H) and saprobicity (Figure 4]): taxa tolerant of
eutrophication conditions contribute to low scores on
axis 2 whereas oligotrophic taxa are associated with high
scores. In addition, axis 2 contrasts the substrate prefer-
ences of taxa (Figure 4F). Dispersal, which plays a key
role in modeling responses to climate change, is also
associated with axis 1 (Figure 4B): taxa with active
aquatic and aerial dispersal behavior were associated
with high scores on axis 1. The temperature preferen-
dum categories plot (Figure 4I) shows that the majority
of the taxa were eurythermic, and to a less extent taxa
preferring warm temperature (negative side of axis 1)
and taxa preferring cold temperature (positive side of
axis 1).

The majority of the categories were distributed along
axis 1 and the stream-sites from the two watersheds
were distinctly clustered along the same axis. Stream-
sites from the AOW were clustered on the negative side
of axis 1 and therefore have higher correlations with the
trait categories on this side of axis 1. The stream-sites
from the CAIW had higher correlations to the trait cat-
egories located on the positive side of axis land were
opposed to those from the AOW.
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Figure 3 Plots of the Correspondence Analysis showing the taxa distribution (Figure 3A) and the distribution of samples in the CAIW
(Figure 3B) and the AOW (Figure 3C). Taxa discussed in the manuscript are represented in bold circles in Figure 3A associated to the taxa
names.
. J
Discussion outcome shows that the community of the CAIW is dis-

Communities and ecological differences between the

two watersheds

The differences in the structure of communities between
the two watersheds are the result of geological history
and natural variation in the riverine landscape. No dams
or channelization has occurred in the Mongolian rivers,
so the lower biodiversities (both gamma and beta diver-
sities) of the AOW cannot be attributed to anthropo-
genic homogenization across drainages [sensu, [44]. A
prediction, complying with the niche theory [45], states
that higher biodiversity in the CAIW could result from
higher diversity of habitats in the watershed. The CA

tinguished by having taxa assemblages of intermittent
streams and cold headwater streams. These assemblages
included some remarkable taxa found only in high alti-
tude glacial-fed streams, like the mountain-midge (Deu-
terophlebia sp.) reported previously in glacier streams of
the Himalaya and Tian-Shan Mountain ranges [46]. The
assemblages of cold headwater streams were found in
low-order streams draining the Altai Mountain range
that stretches from northwestern Mongolia (see Figure 1)
into Kazakhstan and Russia. Similar cold-water streams
were not encountered in the high altitudes of the Hangai
Mountains of the AOW, where glaciers were sparse and
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Figure 4 Plots of the Fuzzy Correspondence Analysis showing the distribution of the different categories of each biological trait
(Figure 4A to J), these same categories are listed in Table 1. Figure 4K shows the distribution of the stream-sites clustered per watershed

(1 for AOW and 2 for CAIW). In Figures 4A to J, the size of the black bold circles representing the traits’ categories indicates the weight of these
categories in the analysis. Plot A is for maximal size, plot B for dispersal (Ag-P for aquatic passive dispersal, Ag-A for aquatic active dispersal, Aer-P
for aerial passive dispersal, Aer-A for aerial active dispersal), plot C for life cycle duration, plot D for potential number of life cycles per year, plot E
for feeding habits (Dep and Fil are for Deposit- and Filter-feeder, respectively), plot F for substrate preferendum (Mac and Mic are for Macrophyte
and Microphyte, respectively), plot G for current velocity, plot H for trophic status (Oligo, Meso and Eutr are for Oligotrophic, Mesotrophic and
Eutrophic, respectively), plot I for temperature preferendum, and plot J for saprobity (Xeno, Oligo, a-meso, 3-meso, Poly are for Xenosaprobic,
Oligosaprobic, a- mesosaprobic, f-mesosaprobic and Ploysaprobic, respectively).

many high-altitude streams were dry during the summer
sampling expeditions.

Higher beta diversity values and lower nestedness
temperature in the CAIW confirm our initial hypothesis
that lower sub-drainages connectivity would support
higher distinctiveness of communities. The importance
of dispersal through the riverine network was also indi-
cated by guild structure analysis. The disconnected sub-
drainages of CAIW prevent passive dispersal via the
riverine network (e.g. downstream drift dispersal); conse-
quently both aquatic and aerial passive dispersals were
less relevant to the structure of the communities in this
watershed (Figure 4B). In contrast, passive dispersals via
aquatic and aerial means were more relevant to the
community structure of the AOW due to a higher phys-
ical linkage between the streams. The dendritic connec-
tions of sub-watersheds are exploited by actively
dispersing fauna such as fishes, as has been observed at

large scale in the Mississippi-Missouri drainage [see, 47].
While dispersal in stream-insect communities was al-
ways considered to be primarily influenced by local en-
vironmental factors [48], and to a lesser extent by a
combination of local and regional factors [49]. Our
results highlight the importance of stream network con-
nectivity in constraining dispersal of aquatic insects
through the larger watershed.

A higher connectivity of sub-drainages also means a
higher connectivity of vegetated riparian buffers that can
provide sheltered habitat corridors for the dispersal of
aquatic imagos. In Mongolia, such dispersal routes (i.e.
following the network of riparian vegetation) can play an
important role due to the structure of the Mongolian
landscape. The lack of dense vegetation on the xeric
Mongolian short grass steppe and a windy environment
may restrict swarming activities of aquatic imagos to the
riparian vegetation. This hypothesis corroborates the
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outcome of Petersen et al. [50] finding that the stream
corridor, including the riparian vegetation, is the main
habitat for active aquatic imagos. Consequently a higher
connectivity in the riparian vegetation between sub-
drainages contributes also to increasing the aerial disper-
sal of aquatic insects via the stream corridor routes. This
interpretation is supported by the guild structure ana-
lysis, where aerial active dispersal was correlated to both
aquatic passive and active dispersals, since both aquatic
dispersals are dependent of aquatic corridors linkage be-
tween the sub-drainages.

Expected changes due to global warming

The consequences of global warming on the stream
communities in Mongolia will be dependent on 1) their
current composition, and 2) the magnitude of the ther-
mal and hydrological changes. Macroinvertebrates in
streams of the AOW have more traits providing better
resistance and resilience to disturbance, and many taxa
there are typified by r-selected traits. Correspondingly,
the AOW community has more taxa with r strategy,
having a higher occurrence of r-selection traits [51].
Small body size, short life cycle (i.e. < one year duration)
and multiple generations per year are the main traits
that characterize community of the AOW. The commu-
nity of the CAIW has more taxa with the K strategy, life-
cycle with traits reflecting high biotope stability. In
addition, the trait analysis differentiated the communi-
ties of these two watersheds based on their trophic sta-
tus. The community of the AOW shows a higher
tolerance to eutrophication with more scrapers and
filter-feeders (Figure 4E), and meso- and polysaprobic
taxa (Figure 4J), found in meso- and eutrophic condi-
tions (Figure 4H). Eurythermy describes the majority of
the taxa in both watersheds, whereas cold-water taxa oc-
curred mainly in the CAIW.

Beyond the functional differences between communi-
ties of the watersheds, remarkable differences in the ex-
tent of permafrost (see Figure 1) and the amount of
rainfall per surface-area unit received by each watershed
suggest different magnitudes for the impacts of climate
change per watershed. More permafrost thaw in the
AOW coupled to localized intense rainfall will be trans-
lated into higher runoff and an increasing input of soil
particles into the drainages. Therefore, even though the
assemblage of this watershed seems to be resilient to dis-
turbances and slight eutrophication, selection for taxa
having greater adaptation to eutrophication is likely to
occur in the future. Taxa intolerant to higher tempera-
tures and siltation in the AOW are likely to decline al-
though the higher opportunity for dispersal may
moderate the probability of population loss at the water-
shed scale.
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A different response to climate change is expected in
the CAIW. The isolated structure of sub-watersheds and
the K-selected traits would suggest higher vulnerability
to major climatic changes. Following an initial increase
in the summer discharge affected by glacial meltwaters,
the longer-term effect on stream will be an increase of
intermittent-flow conditions favoring r-selected traits
and therefore favoring a community adapted to intermit-
tency. Eutrophication associated with permafrost thaw is
expected to have limited impact compared to increased
flow and higher water temperatures which will have
greater impact on the cold stenothermal taxa occurring
in the headwaters of the Altai Mountain range. The loss
of these taxa would result in a major reorganization of
the community composition in mountain streams of the
CAIW.

As climate change affects these watersheds differently,
we would expect species replacement and a shift in the
community’s structures to lead to a greater divergence
between the metacommunities of the CAIW and the
AOW. The AOW community is expected to exhibit
increased tolerance to eutrophication, while the CAIW
community is expected to shift toward lower diversity
and greater distinctness of local assemblages (sensu,
sub-drainages’ assemblages) due to local extinction and
reduced colonization by better adapted taxa. Conserva-
tion planning must incorporate the connected nature of
drainages, a key factor for the conservation of fresh-
water biodiversity [52] when understanding how climate
change will affect the freshwater biodiversity in Mongo-
lia. In addition, Mongolia is currently witnessing in-
creases in mining and livestock production [see, 53]
which also threaten the integrity of its river ecosystems.
We recommend that conservation plans should account
for major differences in the beta diversity, dispersal and
resilience capacity of stream biota in these two major
watersheds.
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