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Abstract

The significance of the transport of nutrient-rich hypolimnetic water via the benthic boundary layer
(BBL) to the productivity of Mono Lake was studied using a coupled hydrodynamic and ecological
model validated against field data. The coupled model enabled us to differentiate between the role
of biotic components and hydrodynamic forcing on the internal recycling of nutrients necessary to
sustain primary productivity. A 4-year period (1991-1994) was simulated in which recycled
nutrients from zooplankton excretion and bacterially-mediated mineralization exceeded sediment
fluxes as the dominant source for primary productivity. Model outputs indicated that BBL transport
was responsible for a 53% increase in the flux of hypolimnetic ammonium to the photic zone during
stratification with an increase in primary production of 6% and secondary production of 5%.
Although the estimated impact of BBL transport on the productivity of Mono Lake was not large,
significant nutrient fluxes were simulated during periods when BBL transport was most active.

Background

The transport of nutrient-rich water from benthic to
pelagic regions has been linked to increased levels of pri-
mary productivity in stratified lakes [1-3]. Ostrovsky et al..
(1996) suggest that seiche activity in the boundary layer of
Lake Kinneret sustained a vertical flux between the
hypolimnetic and epilimnetic waters enhancing biologi-
cal productivity in the lake. MacIntyre et al. (1999) calcu-
lated the upward fluxes of ammonium across the
nutricline in Mono Lake and suggested nearshore bound-
ary fluxes could be the dominant pathway supplying
ammonium to the deep chlorophyll maxima. Eckert et al.
(2002) used microstructure measurements of tempera-
ture, oxygen and hydrogen sulphide in Lake Kinneret to
conclude that following the onset of stratification, the flux

of benthic nutrients to the water column controls primary
productivity. In this study we have defined BBL transport
as that which occurs in the layer bordering the sediments
of a lake [4,5] alternatively referred to as the bottom
boundary layer [6].

The development of basin-scale internal waves arising
from wind-induced energy are responsible for large scale
water motions and most of the turbulence caused by these
large-scale motions occurs in the BBL [7,8]. In order to dif-
ferentiate between boundary and internal modes of verti-
cal transport Yeates and Imberger (2004) parameterized
the split between mixing in the internal and benthic
boundary layer (BBL) using values of Lake number, Ly [9]
and Burger number, By [10]. The Ly is a measure of the
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amplitude of basin-scale internal waves in response to
surface wind forcing, and By describes waves that evolve
from simple seiches [4]. Simulations performed on a
number of monomictic lakes indicated that fluxes
through the BBL were dominant during strong wind
events occurring during period of stratification [4].

A number of studies, aimed at identifying sources and
sinks of nutrients in the photic zone have focused on bac-
terial mineralization [11], regeneration through plank-
tonic organisms [11-13], nitrogen fixation [14],
hypolimnetic flux and inflows and outflows [15].
Although the occurrence of BBL transport and its potential
impact on primary productivity has been examined, the
upward mixing of nutrient-rich hypolimnetic waters via
the BBL and the consequent effect on lake-wide ecological
processes deserves further analysis.

Mono Lake is a nitrogen-limited saline lake with a rela-
tively simple food web [16] and is subjected to wind-
driven boundary-layer mixing events [1]. Yeates and
Imberger (2004) simulated a BBL thickness in Mono Lake
of 10-15 m during a sequence of strong wind event sug-
gesting an active role in the development of the thermal
structure of the lake. These features make it well-suited for
examining the role of BBL-supplied nutrients and the
influence of these nutrients on the seasonal plankton
dynamics and overall productivity of the lake.

The objective of the present study is to investigate the role
of BBL transport in the supply of nutrients to the photic
zone and its consequent impact on the lake's ecology. A
coupled hydrodynamic and ecological model was used to
quantify nitrogen biogeochemistry during a 4-yr period
from 1991-1994 when the lake mixed to the bottom dur-
ing the winter. Initially, we calibrated the model parame-
ters and processes to ensure an acceptable representation
of the field data. The simulated output was then used to
calculate the sources and sinks of nitrogen to the photic
zone. A comparison could then be made between the
roles of recycled and external sources on the primary and
secondary productivity in the lake. To enable quantifica-
tion of the significance of BBL transport for ecological
processes, a series of simulations were run in which this
mechanism was switched off allowing a comparison
between lake behavior with and without BBL transport.

Study Site

Mono Lake (38°N: 119°W) is a large saline lake with a
salinity of 85-92 g kg'!, a maximum depth 45 m, mean
depth 17 m and surface area approximately 160 km? (Fig.
1). The lake was monomictic during the period studied
(1991-1994), and vertically mixed in winter (December
to February) with thermal stratification beginning in early
spring and persisting through autumn [17]. At other times
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following large runoff years, the lake experienced multi-
year periods of chemical stratification (i.e., meromixis;
1982-1988, Jellison and Melack 1993b; 1995-2003, Jel-
lison unpublished data). The present study examines four
monomictic years (1991-94) to assess the effects of BBL
on nutrient cycling and productivity during stratified and
holomictic periods.

The planktonic community of Mono Lake has few species
as is typical of hypersaline waters. The phytoplankton is
dominated by a newly described picoplanktonic (2-3
pum) green alga, Picocystis salinarum Lewin (Lewin et al.,
2000), and several bacillarophytes, mainly Nitzschia spp.
(20-30 um) (Lovejoy & Dana, 1977; Mason, 1967). A
brine shrimp, Artemia monica Verill, is the only macrozo-
oplankter (Lenz, 1980; Lenz, 1984). While pelagic ciliates
and rotifers may also be present at times (Mason, 1967;
Jellison et al. 2001), they contribute a negligible amount
to the total zooplankton biomass.

There is a strong seasonal pattern in the nutrient and
plankton dynamics of Mono Lake [18]. The seasonal pat-
terns are driven by biotic and abiotic forces affecting pro-
ductivity via bottom-up and top-down controls. Water
temperatures of the surface mixed-layer ranged from 2-
5°C in winter to 12-22°C in summer. Seasonal stratifica-
tion and high productivity result in anoxic conditions in
the hypolimnion where ammonium accumulates. The
flux of this ammonium to the photic zone is limited until
winter overturn mixes the whole lake providing nutrients
for a pronounced spring algal bloom. Daily primary pro-
ductivity rates are relatively high (Jellison and Melack
1993a).

The lake's only macrozooplankter, A. monica, produces
over-wintering cysts that lie dormant on the bottom dur-
ing the winter and hatch during early spring (February-
April) [19]. A. monica biomass usually peaks in the late
spring, remains high during the summer and gradually
declines during the autumn as food is scarce and temper-
atures decline. The spring growth of A. monica biomass is
associated with a simultaneous decline in phytoplankton
biomass due to grazing and rise in surface concentrations
of ammonium from zooplankton excretion. Phytoplank-
ton biomass remains low during the summer and only
increases toward the end of the year when grazing pres-
sure is reduced [20].

As phosphorus concentrations are always high (>400 uM;
Jellison et al. 1993), nitrogen limits primary production
in the photic zone (Jellison & Melack 1993a, 2001).
Nitrogen inputs from inflowing streams and planktonic
nitrogen fixation are very low relative to internal fluxes
where the main sources are from sediment release in the
hypolimnion, phytoplankton and zooplankton excretion,
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Mono Lake. Bathymetric map of Mono Lake showing sampling stations. Depth contours are in meters.

and bacterial mineralization of particulate detrital organic
nitrogen. Peak concentrations in the photic zone are
observed at the breakdown of stratification as nutrient-
rich hypolimnetic waters become entrained into the
epilimnion. Towards the end of the mixed period and
onset of stratification ammonium levels are generally low.
When the zooplankton become abundant in late spring,
grazing reduces phytoplankton biomass and internal phy-
toplankton nitrogen is converted to ammonium via the
zooplankton grazing and excretion. Zooplankton excre-
tion and reduced ammonium uptake due to low phyto-
plankton biomass results in an increase in epilimnetic
ammonium concentrations.

Results
Nutrient concentrations, phytoplankton and zooplankton
biomass
The seasonal ammonium pattern of low winter concentra-
tions and high summer values is reproduced by the model

(Fig. 3). Similarly, peak concentrations of ammonium
apparent in the observed data coinciding with the arrival
of A. monica in the spring are matched in magnitude and
timing by the model results. At the breakdown of stratifi-
cation, the model simulated reduced ammonium concen-
trations corresponding to increased phytoplankton
biomass (Fig. 3). However, the isolated high spikes in
ammonium concentration observed in the field data dur-
ing full circulation were generally not captured by the
model (Fig. 3).

The simulated values of phytoplankton biomass follow
the low summer concentrations, timing and slope of the
autumn recovery and spring decline observed in the field
data (Fig. 3). However, the elevated values of phytoplank-
ton biomass observed in the field at the end of the mixing
periods (early 1992, 1993 and 1994) are not captured by
the model (Fig. 3).
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Model schematic. Schematic representation of (A) the model layer structure (B) internal and boundary layer mixing in the
physical model DYRESM. (BBL: benthic boundary layer; Internal: internal cells; BC: benthic boundary layer cells) and (C) the
carbon and nitrogen fluxes represented in the ecological model, CAEDYM. Dotted lines indicate that these variables are not

included in model.

The particulate organic nitrogen (PON) and particulate
organic carbon (POC) data observed in the field closely
followed that of the phytoplankton, with elevated values
during the winter in the absence of grazing and low values
during the summer months. These patterns were captured
by the model, although elevated levels of PON were
underestimated by the model during periods of full circu-
lation (Fig. 3). However, elevated levels of POC were gen-

erally captured by the model which suggests that the
model overestimated the detrital component of the partic-
ulate carbon pool (Fig. 3).

The timing and slope of the early spring peak in A. monica
biomass observed in the field was matched in the simu-
lated results across the four year simulation period (Fig.
3).
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Model simulations. Comparison of model simulation results (lines) and field data (crosses) for Mono Lake from 1991 to
1994 for 9-m depth integrated averages of ammonium (NH,), total phytoplankton carbon (phytoplankton), total organic nitro-
gen (TPON), total organic carbon (TPOC) and dissolved oxygen (DO), vertical net tows of Artemia monica (Artemia).
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Simulated concentrations of dissolved oxygen are similar
to those measured in the field during stratified periods
(Fig. 3). The model, however, under predicted concentra-
tions in late spring for both 1991 and 1992.

Productivity and nitrogen fluxes

Primary productivity in Mono Lake has been estimated
using a numerical interpolative model incorporating pho-
tosynthetic uptake rates and measured vertical attenua-
tion of PAR [21]. During the non-meromictic conditions
of 1989 and 1990, Jellison and Melack (1993a) estimated
an average daily productivity of 1.6 g C m2 d-!. This
matches the value simulated by DYRESM-CAEDYM for
the 1991-1994 monomictic period. During periods of
stratification an average daily productivity of 1.7 g C m2
d-'was simulated and 1.3 g C m2d-! during periods of full
circulation.

Average rates of lake-wide nitrogen deposition measured
in 1986 and 1987 ranged from approximately 5.9 Mg N d-
1 (ca. 2.5 mmol m?2d-!) during the summer to 2.7 Mg N
d!(ca. 1.2 mmol m-2d-1) during the winter (Jellison et al.
1993). These rates are similar to those simulated by the
model, i.e,, 3.7 MgN d'land 2.1 Mg N d-! averaged during
periods of stratification and full circulation, respectively.
Areal average lake-wide nitrogen fluxes from the sedi-
ments were calculated by the model as 12.5 Mg N m-2d-!
and 6.2 Mg N m2d-! averaged during period of stratifica-
tion and full circulation, respectively. Jellison et al. (1993)
estimated the rate of ammonia release from the sediments
based on sediment cores collected in 1988 as 58-162 Mg
N m2d-! (ca. 3.6-10.1 mmol m2d-1). Although greater
than those predicted by the model these estimates were
derived under anoxic conditions so should be taken as an
upper estimate.

Measures of model performance

The calculated values of normalized mean absolute error,
correlation coefficient and slope are presented in Table 3
for each of the main state variables over the full simula-
tion period from 1991 to 1994 and compared to the cali-
bration period from 1991 to 1992. Calculations of
correlation coefficients are all equal to or greater than 0.8
with the exception of ammonium and dissolved oxygen.

Sensitivity analysis

The five parameters that displayed the greatest sensitivity
to annual estimates of lake-wide nitrogen fluxes were: (1)
release rate of NH, from sediments (Syy;4); (2) the frac-
tion of zooplankton grazing excreted (f,.); (3) back-
ground attenuation coefficient (K;); (4) internal nitrogen
to carbon ratio of the phytoplankton (IN_,,) and (5) the
fraction of zooplankton grazing egested (f,). The optimal
parameter value (determined by the model best fit), and
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the upper and lower bounds used to determine alternative
parameter sets are listed in Table 4.

Nitrogen budget

Five major nitrogen fluxes were extracted from the model
to compare the various component of the nitrogen budget
(Fig. 4). These fluxes were: (1) phytoplankton uptake, (2)
sediment to water exchange, (3) bacterially mediated
mineralization, (4) phytoplankton excretion, and (5)
zooplankton excretion. The model results are expressed as
mass flux per day with respect to the whole lake, with phy-
toplankton uptake as a negative flux (sink) and the other
four terms as positive fluxes (source) (Fig. 4). The results
indicate that mineralization of particulate nitrogen made
the greatest contribution to phytoplankton uptake in the
winter and zooplankton excretion during the summer
(Fig. 4). Sediment-released nitrogen fluxes are compara-
tively low, although significant in making up the differ-
ence between phytoplankton uptake and excretion (Fig.
4).

Boundary layer mixing

In the absence of BBL transport a greater buildup of
ammonium in the hypolimnion was simulated, the differ-
ence being greatest in the early part of the stratified period
(Fig. 5). However, the difference in the epilimnion is not
so pronounced. Similarly, the simulated results of the 9 m
depth averaged concentrations of ammonium, PON,
POC, dissolved oxygen and phytoplankton and A. monica
biomass indicated little difference between the alternative
scenarios of BBL mixing (Fig. 6).

Calculations based on model output indicate that for
1991 to 1994 BBL transport was responsible for a 53%
increase in upwards flux of ammonium across the ther-
mocline during periods of stratification. For the corre-
sponding periods, the simulated increase in primary
production was calculated as 6% and secondary produc-
tion as 5%. The model results, averaged over periods of
autumn and winter mixing for the 4 years of simulation,
indicated a reduction in upward ammonium flux of 28%
when the BBL transport was active. This corresponded
with a simulated decrease in primary production of 7%
and negligible increase in secondary production of 1% for
the same periods. The estimated net increase for 1991~
1992 in ammonium flux across the thermocline due to
BBL transport was 9%, primary productivity was 2% and
secondary productivity was 3%.

To place the differences in upward ammonium flux due to
BBL transport in the context of the nitrogen cycle, the five
major nitrogen fluxes were compared for both scenarios
(Fig. 7). Almost no differences were found in the rates of
regenerated nutrients, sediment flux and settling when
BBL transport is inactive. Model results indicate that when
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Nitrogen fluxes. Nitrogen fluxes (Mg N day-') for total phytoplankton uptake (PhyUp) against sediment flux (SedFlux), miner-
alization of PON (Mineral), phytoplankton excretion (PhyEx), and zooplankton excretion (ZoopEx). Corresponding periods of
stratification and full circulation are demarked by dashed lines.

the BBL transport was active ammonium flux across the
thermocline accounts for 11% of the nitrogen sources to
the photic zone during stratified periods. This compares
to 5% when BBL transport is inactive.

Discussion

Several aspects of the modeling require further examina-
tion. The step temperature function used to represent the
process responsible for the hatching and initial growth of
over-wintering A. monica cysts simulated well the timing
and slope of the early spring peak in A. monica biomass.
However, experiments have demonstrated that increases
in salinity can influence the hatching process [22]. It is
anticipated, therefore, that an additional salinity factor
would be required before the model could be used to pre-
dict A. monica dynamics under alternative salinities.
Although simulated mid-summer concentrations of A.

monica compare favorably with those observed in the
field, the autumn decline was difficult to simulate well
(Fig. 3). The model included three processes responsible
for decreases in biomass during this period; limited graz-
ing at low temperatures, end of life mortality and grebe
predation. Improved understanding of the combination
of triggers responsible for the autumn decline in A. monica
will aid in the model representation of these processes.
Alternatively a cohort model such as that proposed by
[23] may be required to accurately represent the autumn
decline.

Differences between measures of fit comparing the cali-
bration and validation periods are small. Although the
ecological dynamics of the model during the validation
period are similar to that of the calibration period, this
result is an indication of model stability. However, this
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BBL ammonium transport. Comparison of NH, (g m-3) depth profiles for the scenarios of BBL transport activated (solid
line) and absent (dotted line) and field data (solid dots) for selected dates from 1991.

stability only relates to the representation of the interac-
tions between the main processes responsible for deter-
mining the ecological patterns observed in the lake over
the four years studied. Comparison to measures of fit for
other lake ecosystem models is difficult as quantitative
measures are rarely given. However, our overall measure-
ment of NMAE compare favorably to Ross et al. (1994)
(0.65) and Bruce et al. (2006) (0.52).

Since we defined sensitivity in relation to estimates of
lake-wide nitrogen fluxes, it follows that the parameters
showing the most sensitivity are related to the nitrogen
cycle. Since the inflow of nitrogen into the lake is negligi-
ble, it follows that for Mono Lake, sediment release is a
critical source of nitrogen to the water column. Similarly
both the fractions of zooplankton grazing that goes into
either egestion (the bulk of which is deposited into sedi-

ments and thus lost from the photic zone) or excretion
(providing nitrogen in a form for primary production)
have a direct effect on the proportion of phytoplankton
nitrogen that is recycled. The ratio of phytoplankton inter-
nal nitrogen to carbon controls both the uptake of inor-
ganic nitrogen by phytoplankton and the flux of nitrogen
recycled via the zooplankton grazing and excretion path-
way. Background attenuation influences nitrogen fluxes
indirectly by controlling the amount of light available for
primary productivity.

Model results indicated that during the summer stratified
periods the N demand by phytoplankton in the surface to
9-m of Mono Lake is predominantly met by zooplankton
excretion, phytoplankton leakage of dissolved organics,
and bacterially mediated mineralization. Of these, the
model predicted that the dominant source was zooplank-
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Effect of BBL transport. Comparison of model simulation results with BBL transport activated (solid lines) and absent (dot-
ted lines) from 1991 to 1992 for 9-m depth integrated averages of ammonium (NH,), total phytoplankton carbon (phytoplank-
ton), organic nitrogen (PON), organic carbon (POC) and dissolved oxygen (DO) and vertical net tows of Artemia monica

(Artemia).
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Lakewide nitrogen fluxes. Comparison of lake-wide nitrogen fluxes for phytoplankton uptake (Phy Uptake), total regener-
ated sources (Tot Regen), sediment flux (Sed Flux), flux across the thermocline (Hyp Flux) and settling of particulate nitrogen
(Settling) averaged annually, during the stratified periods and during the mixed periods from 1991 to 1994 from the boundary
mixing on (black bars) and off (white bars) scenarios. Error bars indicate one standard deviation from mean.

ton excretion. Since zooplankton biomass was well repre-
sented by the model including timing and magnitude of
the initial peak, it follows that during these peaks the
model has the closest fit to the ammonium data. Midwin-
ter spikes in ammonium during period of reduced phyto-
plankton biomass were not reproduced in the model
output. The model simulated almost constant phyto-
plankton biomass during the winter months that is incon-
sistent with the field data. From this we would conclude
that the processes of phytoplankton ammonium uptake
and release are not well represented by the model during
winter conditions of high algal biomass and light-limita-
tion. One of the limitations of this study was the assump-
tion (for simplicity) of a constant internal phytoplankton
C:N ratio. It is anticipated that modeling the internal

nitrogen as a dynamic variable would improve the simu-
lation of the phytoplankton-ammonium interactions par-
ticularly during periods of full circulation.

This study employed optimization techniques to deter-
mine a series of parameter sets to best represent field data
as described by the processes included in the current
model formulation. Some field data were better repre-
sented than others and misrepresentation of field data by
the simulation will serve to direct improvements in future
model generations. Although the modeled fluxes some-
times over or underestimated the measured concentra-
tions, the general seasonal patterns were captured by the
simulations and thus used to provide insight into the
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processes that determine the ecosystem dynamics of
Mono Lake.

Bruce et al. (2006) in their study of the role of zooplank-
ton in the nutrient cycles of Lake Kinneret, Israel, found
zooplankton excretion to be the dominant source of dis-
solved nitrogen during winter overturn and sediment
release the dominant source during summer stratification.
For Mono Lake we also found that zooplankton excretion
was most influential in the summer stratified period.
Although the simulated rate of ammonium flux from the
sediments was higher in Lake Kinneret [24], the main rea-
son for finding sediment-released nutrients relatively less
important in Mono Lake is due to two-fold higher rates of
primary productivity and greater recycling due to zoo-
plankton excretion in Mono Lake.

MaclIntyre and Jellison (2001) suggested that transport of
nutrient-rich hypolimnetic water via the BBL layer is
responsible for increased ammonium flux across the ther-
mocline and consequential increase in productivity. By
comparing the simulation results from the two scenarios
we found that, although the increase in upward ammo-
nium flux across the thermocline during the stratified
periods of 1991-1994 due to BBL transport was 53% (+
4%), primary productivity for the same period increased
only 6% (+ 4%). Since the model suggested that 87% of
the N demand by phytoplankton is met by regenerated
sources, it is not unexpected that an increase in external
supply has a limited impact. MacIntyre et al. (1999) high-
lighted the importance of the flux of BBL transported
ammonium across the thermocline in sustaining primary
productivity to the deep chlorophyll maxima. As a per-
centage of phytoplankton demand during the stratified
periods the upward flux of ammonium across the thermo-
cline was calculated as 12% with BBL on and 5% with BBL
off. MacIntyre et al. (1999) reached a similar conclusion
and, assuming that 5-10% of primary productivity occurs
in the deep chlorophyll maximum during the summer,
suggested that BBL may be the dominant mechanism sup-
plying ammonium to the deep chlorophyll maximum.

As anticipated, during stratified periods simulation results
indicate that BBL transport leads to an increase in ammo-
nium transport across the thermocline and concomitant
increase in primary productivity. However, this pattern
was reversed during periods of mixing. A greater build up
of ammonium in the hypolimnion occurred during strat-
ification in the case where BBL transport is absent (Fig. 6).
Although in the absence of BBL transport, less flux was
available in the photic zone during stratification, at over-
turn a greater mass of ammonium led to greater upwards
flux of ammonium and concomitant increase in primary
productivity. As a result, on an annual average, primary
productivity was similar under both scenarios.

http://www.salinesystems.org/content/4/1/11

Our model results have illustrated the importance of tim-
ing of BBL transport and its subsequent effect on primary
and secondary productivity. The model used in this study
did not include algorithms to represent differences in gen-
erations using a stage-structured zooplankton model.
Inclusion of a stage structured model might enable us to
determine whether the timing of BBL transport events and
concomitant increases in primary productivity effect the
timing and magnitude of successive generations of A.
monica in Mono Lake.

It is apparent that one of the reasons the transport of
ammonium via the BBL does not have a significant impact
on the productivity of Mono Lake is that sediment
released nutrients are not a major component of the nutri-
ent cycle. Model results have confirmed previous studies
indicating that productivity is predominantly sustained
by recycled nutrients (Jellison et al.. 1993). Furthermore,
simulated estimates of BBL volume from 1991-1994
revealed that, on average, the benthic boundary layer
comprised only 1% by volume and stored only 1% of the
lake-wide nitrogen mass. To investigate the potential
importance of BBL transport for shallower lakes where the
volume of BBL may be larger in proportion to the lake vol-
ume we ran three additional simulations. The same Mono
Lake input files for 1991-1994 were used, lowering the
surface level of the lake to simulate initial depths of 35 m,
30 m and 22 m. Combining the results of these simula-
tions we plotted the flux of ammonium transported via
the BBL as a fraction of N demand by phytoplankton
against daily average values of Lake Number (Ly) and pri-
mary productivity (Fig. 8). Simulated output indicated
that the fraction of N demand met by hypolimnetic nutri-
ents transported upwards in the BBL rarely exceeds 50%
and only when primary productivity is minimal or for Ly
close to 1. The Ly is inversely proportional to the thermo-
cline height and is both a measure of the energy available
at the thermocline from wind induced surface stress and
the volumetric importance of the hypolimnion [9].

For Lake Kinneret, estimates of monthly primary produc-
tivity fall between 0.5 and 1.7 g C m2 d'! (Bruce et al.
2006). Mean daily values of Ly estimated for Lake Kin-
neret range from 10-2to 100 with a period of low Ly asso-
ciated with strong wind events (Yeates and Imberger
2004). Given these ranges, it is predicted that the impor-
tance of BBL transport in Lake Kinneret may be greater
than the 6% predicted for Mono Lake. In Lake Geneva, a
study investigating the effect of internal waves on basin
exchange indicated up to 40% of the hypolimnetic vol-
ume was exchanged following episodes of strong winds
[25]. Primary productivity in Lake Geneva is relatively
high [26]. For Lake Constance, estimates of L during
stratification are relatively high (Yeates and Imberger
2004) and productivity is less than 1 g C m2d-! [27] sug-
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Ammonium flux versus lake number. Flux of ammonium transported via the BBL as a fraction of lake-wide vertical fluxes
(closed circles) versus daily average values of Lake Number (L)) and Burger Number (By).

gesting that for Lake Constance the transport of nutrients
through the BBL may be less important to overall lake pro-
ductivity but potentially significant during episodic events
associated with low Ly

The results of this study have indicated that the relative
importance of BBL transport as a source of nutrients sus-
taining productivity in the photic zone is determined by
productivity and morphology. Future studies will be
focused on comparing the effect of BBL transport on the
ecology of other lakes. By differentiating between physical
and ecological process we will be able to determine what
limnological features alter the importance of BBL trans-
port.

Methods

Model description

The model used in this study is a modified version of the
Computational Aquatic Ecosystem Dynamics Model
(CAEDYM) [28,29] coupled to the Dynamic Reservoir
Model (DYRESM) [4]. In DYRESM the lake is represented
as a series of homogeneous horizontal layers of variable
thickness [4]; as inflows and outflows enter or leave the
lake, the affected layers expand or contract, respectively,
and those above move up or down to accommodate the
volume change. Mass, including that of the ecological
state variables, is adjusted conservatively each time layers
expand, contract, merge or are affected by inflows and
outflows. The main processes modelled in DYRESM are
surface heat, mass and momentum transfers, mixed layer
dynamics, hypolimnetic mixing, benthic boundary layer
mixing, inflows and outflows.
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Local meteorological data are used to determine heating
due to short-wave radiation and surface heat fluxes due to
evaporation, sensible heat, long-wave radiation and wind
stress. The surface wind field introduces both momentum
and turbulent kinetic energy to the surface layer contribut-
ing to vertical mixing. In addition to surface layer mixing,
DYRESM includes algorithms that account for internal
mixing (encompassing the effects of internal wave ener-
gized shear mixing) and benthic boundary layer (BBL)
mixing (determined by the turbulent kinetic energy
budget and parameterized by Lake number and the Burger
number). The total volume of water (F,') exchanged by
deep water mixing and transport processes for layer i is
determined by the following equation:

200N ZAK At

5 (646 (1)
LNNmaX( 1 21+1)

T _
i

where N2 is the buoyancy frequency, A is the layer area
(m?2), K, is the molecular diffusion coefficient for heat, At
is the time step (seconds), Ly is the Lake number and &, the
layer thickness of layer i (m) [4]. In this way mass transfer
is enabled from hypolimnetic layers to the thermocline
region internally and via the BBL. A recent modification of
the DYRESM code is the separation of these mass transfers
described in detail by Yeates and Imberger (2004). The
Lagrangian layers have been separated into internal and
BBL cells so volume exchange occurring beneath the sur-
face mixing layer can be separated into that associated
with internal mixing (between internal cells) and that
associated with benthic boundary layer mixing (between
BBL cells; Fig. 2A&B). The volume exchange is partitioned
into BBL (F/) and internal (F}) using the following equa-
tion:

El tanh( BN )(Ln-1
Pk anh(BN )(LN-1) Ly>1

i LN
0 otherwise

and FP=F" —F/

(2)

where By is the Burger number [4].

The ecological model CAEDYM was set up in the form of
an 'N-P-Z'  (nutrients-phytoplankton-zooplankton)
model (Fig. 2C) with resolution to the level of individual
species or groups of species [24]. In the present study it is
used to simulate phosphorus and nitrogen in both partic-
ulate and dissolved inorganic forms (POP and PO,, PON,
NO;, NH,), dissolved oxygen (DO), particulate organic
carbon (POC), dissolved organic carbon (DOC), one phy-
toplankton group representing Picocystis sp. and one zoo-
plankton group representing A. monica. A series of
ordinary differential equations is used in CAEDYM to
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describe changes in concentrations of nutrients, detritus,
dissolved oxygen, phytoplankton and zooplankton as a
function of environmental forcing and ecological interac-
tions for each cell represented by DYRESM (Table 1). The
variables of irradiance, temperature, salinity and density
are also passed to CAEDYM at each 1-hr time step and
used in equations to determine rates of change of biomass
and chemical constituents for each of the ecological state
variables. The two models CAEDYM and DYRESM share
the same layer structure including the division of
hypolimnetic layers into two cells, BBL and internal. The
BBL cells are considered adjacent to sediment cells so that
sediment exchange of nutrients and dissolved oxygen
occurs to and from these cells. The physical transfer of
ecological variables between adjacent cells due to various
mixing processes is accounted for in DYRESM. Further
details of the structure of CAEDYM are given in Robson
and Hamilton (2004) and Romero et al. (2004).

The major nutrient fluxes represented in CAEDYM are
uptake of dissolved inorganic nutrients by phytoplank-
ton, release of dissolved nutrients from phytoplankton
excretion, grazing, egestion and excretion of nutrients by
zooplankton, nitrification and denitrification of inorganic
nitrogen, sedimentation of nutrients in particulate form,
mineralization of organic nutrients and release of dis-
solved nutrients from sediments (Table 1).

Net change in carbon concentration of the phytoplankton
at each model time step is calculated as the difference
between the increment due to gross primary production
and losses due to sedimentation, grazing by zooplankton,
respiration, excretion and mortality. These terms are cal-
culated using equations parameterized to represent the
physiology of the main phytoplankton species. Losses due
to grazing by zooplankton are calculated by multiplying
the food assimilation rate for the zooplankton by a pref-
erence factor for phytoplankton over detrital POC.

Net zooplankton growth is calculated as a balance
between food assimilation and losses from respiration,
excretion, egestion, predation and mortality. Food assim-
ilation is calculated as the product of the maximum
potential rate of grazing, assimilation efficiency, and tem-
perature and food concentration functions. A constant
internal nutrient ratio is assumed and excretion of nutri-
ents calculated to maintain this ratio at each time step.
Advective movement of zooplankton is carried out in
DYRESM.

Bacteria have not been directly simulated as they were not
measured during the study period. However the nutrient
pathways mediated by bacteria were included as mineral-
ization of the particulate organic pools (POC, POP and
PON). The POC, POP and PON pools available for zoo-

Page 13 of 21

(page number not for citation purposes)



Saline Systems 2008, 4:11 http://www.salinesystems.org/content/4/1/11

Table I: Model process equations. Equations used to describe the processes included in the ecological model CAEDYM

0zt = [GARZ)if| (T)(Ifex-feg) - (RFM)F(T) - Pred]Z;
= (assimilation - excretion - egestion) - (respiration + mortality) - predation
OPIBE = [Py f(TImin(fU).AIP).AIN)) - (RYF(T) - Pred]P S,
= photosynthetic uptake - (respiration + excretion + mortality) - predation * settling
oPOC/ot = E[GAZ)fI(TMI((1-A) + Af) + MAMIZ + Z[R(14,.)(1foomfa(NIP, - PredsocPOC - RpocfDO)f, (TPPOC £ Spopy
= (unassimilated zooplankton food + zooplankton egestion + zooplankton mortality) + phytoplankton mortality - zooplankton predation - POC
decomposition * settling
DOC/ot = [R(1-,e)foomfa(MIP; + Reocfroc(POC) (DO)(TIPOC - Rpocf (DO)f(T)DOC
= phytoplankton excretion + POC decomposition - DOC mineralisation
OPOPIGL = S[GAZ)f(TH((1-A) + Afeg) + METIPLZ,+ Z[R (1.0 (1-foom)fa(T)IP; - PredsocPOP - RoopfDO)f (TPOP £ Spop
= (unassimilated zooplankton food + zooplankton egestion + zooplankton mortality) + phytoplankton mortality - zooplankton predation - POP
decomposition * settling
ODOP/ot = (R (16, )foomfa(MIP, + ZIAfGAZ)f(T)IIPLZ,+ Reoef (DO)f,(T)POP - Rogef (DO)F; (TYDOP
= phytoplankton release + zooplankton excretion + POP decomposition - DOP mineralisation
dPO4/6t = Roopf (DO)fy(TDOP - Z[UN, fi (TUIP)fP)IP, + SepoaDONR(TILAILY
= DOP mineralisation - phytoplankton uptake + PO4 sediment flux
OPON/Gt = S[GAZ)fi (TH((1-A) + Af) + MEMIINGZ + ZIR(1-,) (1-fpomfa(DIIN; - PredpoyPON - RpoufDO)f(T)PON & Spop
= (unassimilated zooplankton food + zooplankton egestion + zooplankton mortality) + phytoplankton mortality - zooplankton predation - PON
decomposition * settling
ODON/Gt = Z[R(1 e foorfa(MIIN; + SIAfLGAZD)fi(TIINZZ, + ReonfIDO)(T)PON - RoonfDO),(T)DON
= phytoplankton release + zooplankton excretion + PON decomposition - DON mineralisation
ONH4/0t = RponfIDO)S (T)DON - Z[UN,,,, Prfi (T)AIIN)AN)IP, - RyofIDO)f(T)INH4 + Sy fIDO)S(T)LALY
= PON mineralisation - phytoplankton uptake - nitrification + NH4 sediment flux
ONO3/0t = RyoflDO)fH(T)NH4 - Ry,f(DO)f(T)NO3 - Z[UN,,,,.;(1-P)fi (T),AIIN),fIN) P,
= nitrification - denitrification - phytoplankton uptake

0DO/3t = kep(DO_atm - DO) + Z[P,, f (T)min(f1).fP)AIN)) - RE(T)IPY 02.c ZIRFATHIZY 02 - Rpocf (DO)I(T)DOCY oy ¢ - Ryvof
(DO)R(T)NH4 - S40,fIDO)f(T)LALY
= atmospheric flux + (phytoplankton oxygen production - phytoplankton respiratory consumption) - zooplankton respiratory consumption -
utilisation of oxygen in mineralisation of DOM - utilisation of oxygen in nitrification - sediment oxygen demand.

Temperature functions

f,(T) = 6720 6K(T2) + b

where k, a and b are constants solved numerically to satisfy the following conditions:
fi(M) =1;at T =Tsta

Of|(T)/OT = 0;at T = Topt

fi(T) = 0; at T = Tmax

fo(T) = 6720

Limitation equations

f(Z)=(EP+5Z, +POC)/(K+EP+5Z, +POC)

1), = 1, exp(1-11,)

f(IP)l = [IPmax/(IPmax'IPmin)] [I_IPmln/IP]

f(IN)j = [INmax/(INmax'INmin)] [I'INmin/IN]

f(DO) = DO/(Kpo*DO)

f(P) = PO4/(Kpos+PO4)

f(N) = (NH4+NO3)/(Ky,*NH4+NO3)

P = (NH4 NO3)/[(NH4+K ) (NO3+Ky)] + (NH4 Ky [(NH4+K) (NO3+Ky)]

Settling
S, = (ws/Az)P,
Srom = (&(Prom - Pw)(Drom)?/ 1811)/Az)POM

Predation

Pred, = (G, f(2),f|(T),ZPzZOO, )
Pred; = X(G{f(2)f(T),ZPzPHY;))
Abbreviations: Z, zooplankton; P, phytoplankton; POC, particulate organic carbon; DOC, dissolved organic carbon; POP, particulate organic
phosphorus; PO,, phosphate; PON, particulate organic nitrogen; NH,, ammonium; NO;, nitrate; POM, particulate organic matter (C, N or P); IP,,
zooplankton internal phosphorus; IN,;, zooplankton internal nitrogen; IP;, phytoplankton internal phosphorus; IN;, phytoplankton internal nitrogen;
DO, dissolved oxygen; DOatm, concentration of oxygen in the atmosphere; LA, layer area; LV, layer volume; Az, layer thickness; p,,, density of
water; |1, viscosity of water; kg,, oxygen transfer coefficient. Subscripts: i, zooplankton group; j, phytoplankton group; k, zooplankton predator

group.
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plankton grazing include bacteria. Predation of zooplank-
ton by grebes was included by an additional predation
term for the months of August to November estimated
from predation studies (Cooper et al. 1984).

The advantage of using a depth resolved model DYRESM
linked to the ecological model CAEDYM is that we could
explore the effect of transport and mixing between the
epilimnion, metalimnion and hypolimnion on the eco-
logical processes in the lake. Of most relevance to this
study is the exchange of nutrient-rich hypolimnetic waters
to the photic zone via the BBL and its consequential effect
on the primary productivity. The separation of internal
and BBL cells in the layered structure of the current
DYRESM allowed us to differentiate between the transport
of nutrients in the internal and BBL and to determine the
relative importance of each process on the mixed layer
ecological dynamics. The ecological model also returns
the attenuation coefficient (as a function of the concentra-
tion of both phytoplankton and particulate organic mat-
ter) to the hydrodynamic model at each one-hour time
step. This variable is used to determine the extent of light
and heat penetration that in turn governs the deepening
of the surface mixed layer and the timing of winter turno-
ver. In this way the feedback on a sub-daily time scale
between the ecological and physical models is instrumen-
tal in the application of the model to aid in understanding
of the interaction of various lake processes.

Field sampling and analytical analysis

Seasonal and year-to-year variations in the physical,
chemical, and biotic environments were monitored fort-
nightly from March through October and monthly during
November through January. Water temperature and con-
ductivity were measured at nine buoyed, pelagic stations
(2,3,4,5,6,7,8,10 and 12) (Fig. 1). Profiles were taken
with a high-precision, conductivity-temperature-depth
profiler (CTD) (Seabird Electronics model Seacat 19)
equipped with a submersible photosynthetically available
radiation (PAR) (LiCor 191S), fluorescence (695 nm)
(WETLabs WETStar miniature fluorometer), and trans-
missivity (660 nm) (WETlabs C-Star Transmissometer).
Specific conductivity, salinity, and density were all calcu-
lated based on equations derived from measurements on
Mono Lake brine [30]. Dissolved oxygen was measured at
one centrally located station (Station 6) with a Yellow
Springs Instruments temperature-oxygen meter (YSI,
model 58) and probe (YSI, model 5739). The oxygen elec-
trode was calibrated at least once each year against Miller
titrations of Mono Lake water (Walker et al. 1970).

Ammonium and chlorophyll profiles were determined by
sampling 7-10 discrete depths at two pelagic stations (2
and 7; Fig. 1), while A. monica abundance was determined
via vertical net tows collected at 10 (1991-1992) or 20
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(1993-1994) pelagic stations (Fig. 1). Chlorophyll a was
also determined in the upper water column from samples
collected with a 9-m integrating tube sampler at 5 pelagic
stations (2, 6, 7, 10, 11; Fig. 1).

Nutrient and phytoplankton samples were immediately
passed through a 120-um net to remove all stages of A.
monica and a sub-sample filtered through Gelman A/E
glass fiber filters for analysis of nutrients (Jellison and
Melack 1993a). Ammonium concentrations were meas-
ured with the indophenol blue method as described by
Jellison et al. (1993). Nitrate and nitrite concentrations
were measured but were always low (< 1 uM) [21,31] and
thus not considered in this study. Phosphate concentra-
tions are orders of magnitude greater than the half satura-
tions constants for phytoplankton so were not considered
in this study [21]. Phytoplankton chlorophyll a was deter-
mined by spectrophotometric analysis as described by Jel-
lison and Melack (1993a). Conversion of chlorophyll to
carbon units were made by assuming a C:Chl a ration of
50 (see Jellison & Melack 2001). Subsamples were filtered
onto precombusted Gelman A/E filters for the determina-
tion of particulate organic carbon (POC) and nitrogen
(PON). Duplicate carbon and nitrogen filters were acid
fumed for 12 hours over concentrated HCl, and then
dried at 40-50°C before determination by combustion in
a Perkin-Elmer 240B elemental analyzer standardized
with acetanilide. A. monica were collected using vertical
net tows (120-um mesh) to within 1-m of the bottom or
well below the oxycline depending on stratification. A.
monica biomass (dry weight) was estimated from stage-
specific abundance, adult female length data, and weight-
length relationship determined in the laboratory simulat-
ing in situ conditions of food and temperature [32]. Con-
version from dry weight to carbon assumed 0.4 g C/g dry
weight [33,34].

Model inputs

Model input files included data for initialization, meteor-
ology, inflows and outflows. The initialization file was
prepared from field data collected on 13 January 1991.
On this day the temperature of the lake ranged from 2.5
to 3°C and the salinity from 88 to 88.5 g kg'!. Inflow data
included the daily volume, temperature and salinity for
two inflows, one representing total surface inflows
(streams and direct runoff) and the other, hydrothermal
springs. The volume of the hydrothermal springs was set
at 3888 m3 day'!, based on a 3He mass balance of Mono
Lake [35]. The surface inflows were calculated based on a
water mass balance using measured values of water depth
and evaporation calculated by DYRESM. As ammonium,
phytoplankton and zooplankton concentrations are neg-
ligible in the inflows, they were set to zero (Jellison and
Melack 2001). Meteorological input data included hourly
short- and long-wave radiation, air temperature, vapor
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pressure, wind speed and precipitation [36]. Air tempera-
ture, vapor pressure (converted from relative humidity),
wind speed and precipitation were collected at a meteoro-
logical station located on Paoha, a central island (Fig. 1).
Radiation data were collected from a meteorological sta-
tion located approximately 7 km from the southwest
shore of the lake (Fig. 1).

The physical parameters used to simulate the hydrody-
namics of Mono Lake were either physical constants or
ones fixed according to the dimensions of the lake [4].

The formulation of CAEDYM used here to describe the
ecological variables and processes required 57 parameters
determined by several methods (Table 2). Most phyto-
plankton parameters were derived from experimental
analysis on the predominant phytoplankton species of
Mono Lake [21,37]. The zooplankton parameters were
determined where available from experiments conducted
on A. monica or alternative Artemia species (Table 2). If
parameters were not available, a series of model runs were
performed to calibrate the simulation results against field
data, maintaining parameter values within the bounds of
literature values measured in other lakes.

A variety of quantifiable measures of model fit are
described in Alewell and Manderscheid (1998). We
choose the average absolute error normalized to the mean
(NMAE):

n
3 (|se-or) (3)

NMAE = =1

no
where s, is the simulated value at time ¢, o, is the observed
value at time t, 0 is the mean of the observed values over
the simulation period and n is the number of observed
values. NMAE is a measure of the absolute deviation of
simulated values from observations, normalized to the
mean; a value of zero indicates perfect agreement and
greater than zero an average fraction of the discrepancy
normalized to the mean. To compare the extent of varia-
bility within the observed data, we also calculated for each
state variable, the standard deviation of observed data
normalized to the mean over the simulation period
(Table 3). In addition, the correlation coefficients and
associated slope for the direct comparison of observed
against simulated values for each state variable were calcu-

lated.

The period from 1991-1992 was used for initial parame-
ter calibration. Comparisons of field and model data were
made for six major model state variables: (1) ammonium
(NH,); (2) particulate organic nitrogen (PON); (3) partic-
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ulate organic carbon (POC); (4) dissolved oxygen (DO);
(5) phytoplankton carbon and (6) zooplankton carbon.
PON and POC refer to the sum of phytoplankton and
detrital particulate nitrogen and carbon, respectively.
Lake-wide averages of the surface to 9-m integrated con-
centrations of NH4, PON, POC, DO and phytoplankton
carbon were compared. For zooplankton, lake-wide aver-
aged biomass (g C m2) as determined by vertical net tows
were compared to vertically-integrated model output.

A manual calibration procedure was initially applied
whereby individual parameters were adjusted and the
model response observed. The particular features of the
observed data that were used to adjust individual param-
eters were dependent on the parameter adjusted. For
example, the minimum temperature for A. monica growth
was adjusted to gain best representation of the timing of
the spring zooplankton peak and the grazing rate adjusted
to gain best representation of the magnitude of this peak.
Individual parameters were adjusted in this way until an
overall model average NMAE (calculated using the field
data from the five variables listed above) of less than 0.5
was achieved.

Once a reasonable fit was achieved through trial-and-
error, the local parameter space optima was determined
by applying a Levenberg-Marquant (L-M) method of opti-
mization [38] using a predefined Matlab® function (The
MathWorks Inc., Natick, MA). In this function, parameters
were adjusted to optimize the sum of the NMAE values for
the same five variables listed above. Additional bounds
were placed on simulated values of primary productivity
and nitrogen sedimentation to fall within the ranges of
those estimated by Jellison et al. (1993). The years 1993~
1994 were used for model validation.

Uncertainly in model predictions arises from different
sources including those associated with process represen-
tation, parameter estimation, uncertainty in inputs and
observed data [39-42]. While a full analysis of model
uncertainty is beyond the scope of this paper, we made an
estimate of the uncertainty associated with parameter esti-
mation by comparing output from simulations using ten
different parameter sets. Initially, the five most sensitive
parameters to model output were established by the sen-
sitivity analysis described below. We then determined
alternative parameter sets by fixing the lower and upper
bound of each parameter and then optimizing the
remaining parameters via the L-M method described
above until appropriate calibration was achieved. A
benchmark NMAE value of 0.5 was selected so that cali-
bration was deemed successful if the NMAE was less than
0.5 (Table 4). The lower and upper bounds for each sensi-
tive parameter were determined by experimental or litera-
ture ranges. Model output from this suite of parameter
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Table 2: Model parameters. Parameters used in CAEDYM to simulate ecological variables in Mono Lake.

General
Parameter Description Units Assigned value  Values from field/lit
Ky Background extinction coefficient m-! 0.35 0.29-0.342
Source 2 Calculated from unpub data on in-situ light
measurements
Phytoplankton
Parameter Description Units Assigned values: Values from field/literature
Proax Maximum potential growth rate d-! 5.96 7.22
I Parameter for initial slope of Pl curve pEm-2s-! 25 25b
Kep Specific attenuation coefficient m2g C-! 0.008 0.008¢
Kp Half saturation constant for phosphorus uptake mg L-! 0.001 Low value as not P limited
Kn Half saturation constant for nitrogen uptake mg L-! 0.0573 Calibrated
INcon Constant internal N ratio mg N (mg C)-! 0.0926 0.17d
IPon Constant internal P ratio mg P (mg C)-! 0.026 0.048d
9; Temperature multiplier for growth 1.06 1.07¢
Tea Standard temperature °C 19
Tope Optimum temperature °C 22
Trnax Maximum temperature °C 395
R; Metabolic loss rate coefficient d-! 0.302 Calibrated
O Temperature multiplier for metabolic loss 1.05 Calibrated
fres Fraction of respiration relative to total metabolic loss 0.693 Calibrated
foom Fraction of metabolic loss rate that goes to DOM 0.291 Calibrated
ws Settling velocity md-! 0.008 0.04-0.013f
Sources 3Jellison and Melack 1993a, based on maximum value of carbon uptake measured from lake samples 1983—1990 assuming 50 g C g Chl
a!
bJellison and Melack 1993a, based on minimum value of |, measured from lake samples 1983-1990.
¢Jellison and Melack 1993a.
dJellison and Melack 2001, estimated from seston ratios during the summer period from monomictic years 1991-1995 1984
¢Jellison and Melack 1993a, based on Q10 of 1.95.
flellison et al.. 1993.
Zooplankton
Parameter Description Units Assigned values: Values from field/literature
G, Grazing rate gCm3(gCm3)ld! 1.12 1.262
A, Grazing efficiency - 1.0 Close to | as filter feeders
R; Respiration rate coefficient d-! 0.113 0.035-0.1b
M, Mortality rate coefficient d-! 0.0107 0.0033<0.02624
feg Fecal pellet fraction of grazing d-! 0.096 Kfz+kez = 0.36-0.68°
fox Excretion fraction of grazing d-! 0.49
DOmz Minimum DO tolerance mg L-! 0.0 0-1.2f
6, Temperature multiplier for growth 1.055 1.228
Tmin Minimum temperature Deg C 6 6.8-9.0h
Ori Respiration temperature dependence 1.10
K Half saturation constant for grazing gCm3 .12 2.96
IN; Internal ratio of nitrogen to carbon. gNgC! 0.208 0.197/0.218i
IP,; Internal ratio of phosphorus to carbon gPgC! 0.02 0.0135k
PzPHY Preference of zooplankton for phytoplankton 0.8
PzPOC Preference of zooplankton for POC 0.2
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Table 2: Model parameters. Parameters used in CAEDYM to simulate ecological variables in Mono Lake. (Continued)

Sources

2[33,44] (Artemia fransiscana optimal food || days old)
b[33,44] (Artemia fransiscana range of food |1 days old)

‘Jellison et al.. 1993 (based on survival rate over 30 days)
dDana and Lenz 1986 (based on survival rate over 26 days)

eEvjemo et al.. 2000, Artemia fransiscana.

DO concentration at depth of deep Chl a maxima (unpub data).

glellison et al.. 1993 (best fit to temperature function used in model)

h Jellison unpub data 1991-1994. (based on temperature at which total biomass < 0.0 before Spring growth)
Eviemo and Olsen 1999 (Artemia fransiscana || days old, 26-28°C, Holling Type )

i]ellison unpub data (Females/Males)
k[45]

Dissolved Oxygen and Nutrients

Parameter Description Units Assigned values  Values from field/literature
Sdpo DO sediment exchange rate g m2d-! 0.053
Kpo_sed Half saturation constant for DO sediment flux mg O L-! 0.537
Kpo_ pom  Half saturation constant for dependence of POM/ mg O L! |.46
DOM decomposition on DO
fanB Aerobic/anaerobic factor - 0.357
Orom Temperature multiplier - 1.03 1.02—1.142
Reoc Mineralisation rate for POC to DOC d-! 0.12
Reop Mineralisation rate for POP to DOP d! 0.1 0.01-0.12
Reon Mineralisation rate for PON to DON d-! 0.4 0.01-0.032
Drom Diameter of POM particles m 0.000009
PPOM Density of POM particles kg m3 1109
KePOC Specific light attenuation coefficient for POC m2g! 0.00943
Rooc Mineralisation rate for DOC d-! | Set to | to eliminate DOP pool for
simplicity
Roop Mineralisation rate for DOP to PO4 d! | Set to | to eliminate DOP pool for
simplicity
Roop Mineralisation rate for DOP to PO4 d! | Set to | to eliminate DOP pool for
simplicity
Roon Mineralisation rate for DON to NH4 d-! | onset to | to eliminate DON pool
for simplicity.
KeDOC  Specific light attenuation coefficient of DOC m2g! 0.001
Ruz Denitrification rate coefficient d-! 0.000864 0.12
On2 Temperature multiplier for denitrification - 1.08 1.0452
Kz Half saturation constant for denitrification mg N L-! 1.75
dependence on oxygen
Rno Nitrification rate coefficient d-! 0.00553 0.1-0.22
Ono Temperature multiplier for nitrification - 1.08 1.082
Kno Half saturation constant for nitrification dependence  mg O L! 0.5
on oxygen
Osed Temperature multiplier for sediment nutrient fluxes - 1.05
SaNH4 Release rate of NH4 from sediments gm2d’! 0.0712 0.054-0.18
Koo sanne  Controls sediment release of NH4 via oxygen — Half g m-3 0.565
saturation constant for sediment NH4 release
dependence on DO
Sources 3Jorgensen and Bendoricchio 2001
bJellison et al.. 1993
sets was then used as an estimate of the relative uncer-  To determine the five parameters most sensitive to model

tainty in model output. As the upper and lower bound of ~ output, a sensitivity analysis was performed on each of the
the five most sensitive parameters were used, this should =~ CAEDYM parameters listed in Table 2. Sensitivity coeffi-
provide a conservative estimate of the model uncertainty  cients (s;) to assess the relative sensitivity of variable i to
associated with parameter estimation.

parameter j were calculated according to:
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Table 3: Normalised mean absolute error.

http://www.salinesystems.org/content/4/1/11

Variable NMAE SD/Mean r2 Slope

NH, 0.58 (0.56) 0.88 (0.72) 0.37 (0.59) 0.29 (0.61)
Phytoplankton 0.45 (0.44) 1.15 (1.04) 0.79 (0.85) 0.61 (0.80)
Artemia monica 0.30 (0.30) 0.85 (0.95) 0.79 (0.83) 0.80 (0.87)
TPON 0.35 (0.34) 0.83 (0.82) 0.90 (0.94) 0.52 (0.57)
TPOC 0.43 (0.42) 0.91 (0.88) 0.86 (0.92) 1.02 (1.15)
Dissolved oxygen 0.31 (0.31) 0.48 (0.48) 0.64 (0.64) 0.32 (0.32)
Average 0.40 (0.40) 0.85 (0.82) 0.72 (0.79) 0.59 (0.72)

Results of normalised mean absolute error (NMAE) calculations applied to compare simulated to field data for simulated years 1991-1994. The
values in brackets represent the same calculations made over the 19911992 calibration period.

Acj
Cj

i/
Fj

where Ac; is the change in output variable i from the refer-
ence value ¢;and Af is the change in parameter j from the
reference value S [43]. Because this study is concerned
with the role of physical transport mechanisms on lake-
wide nitrogen fluxes, we focused on the response of the
five major nitrogen fluxes (phytoplankton uptake, sedi-
ment flux, zooplankton regeneration, settling and upward
flux into surface mixed layer) to parameter manipulation.
Each parameter was adjusted by + 10% or by + 0.01 in the
case of the temperature multipliers. A time variant array of
sensitivity parameters was calculated for each flux and
then the average taken and used to rank the parameters
according to sensitivity.

To enable us to quantify the significance of BBL transport
on the ecological processes of the lake, a series of simula-
tions were run in which this mechanism was switched off
allowing a comparison between lake behavior with and
without BBL transport. In DYRESM the lake-wide vertical
fluxes are partitioned into internal and BBL contributions

Table 4: Sensitivity analysis.

(see eq.36 in Yeates and Imberger (2004)). The BBL con-
tribution was set to zero with all other parameters (physi-
cal and ecological) remaining the same. The simulated
output of nitrogen fluxes and primary and secondary pro-
duction were then analyzed and compared against base
line output.

List of abbreviations used

BBL: Benthic boundary layer; CAEDYM: Computational
aquatic ecosystem dynamic model; DYRESM: Dynamic
reservoir simulation model.
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Parameter Optimal Lower bound Upper bound NMAE (lower bound) NMAE (upper bound)
SaNH4 0.06 0.0l 0.10 0.49 0.42
o 0.50 0.05 0.70 0.49 0.44
Ky 0.30 0.35 0.25 0.41 0.43
INcon 0.09 0.07 0.22 0.47 0.49
feg 0.16 0.05 0.20 0.47 0.42

The minimum and maximum values of the five most sensitive parameters and the corresponding results of normalised mean absolute error (NMAE)
calculations applied to compare simulated to field data for simulated years 1991—-1994. The values in brackets represent the same calculations made

over the 1991-1992 calibration period.
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