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Abstract
Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically
tractable. Since its genome sequence was completed in 2000, a combination of genetic,
transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its
extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we
review post-genomic research on this archaeon, including investigations of DNA replication and
repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the
proteome for function at high salinity, and role of lateral gene transfer in its evolution.

Background
Halophilic archaea (haloarchaea) are extremophiles that
grow optimally under conditions of extremely high salin-
ity, 5–10 times that of seawater [1]. They contain a simi-
larly high concentration of salts internally and exhibit a
variety of novel molecular characteristics, including acidic
proteins that resist the denaturing effects of salts, and
DNA repair systems that minimize the deleterious effects
of desiccation and intense solar radiation. In addition,
haloarchaea are metabolically versatile, exhibiting pho-
totrophic and facultative anaerobic capabilities. Signifi-
cantly, their ease of culturing and genetic tractability have
made them model experimental organisms and facilitated
the use of isogenic strains for rigorous post-genomic stud-
ies.

Classical studies of haloarchaea contributed significantly
to our understanding of adaptive mechanisms, as well as
universal features of life [2]. Notable discoveries originally
made using haloarchaea include the S-layer glycoprotein

cell wall [3], branched-chain ether lipids [4] and light-
driven proton pump, bacteriorhodopsin [5], in the cell
membrane, and metabolic and biosynthetic processes
operating intracellularly at saturating salinity [6]. Demon-
stration of light-driven ATP synthesis by reconstituted
lipid vesicles containing bacteriorhodopsin and mito-
chondrial ATPase provided proof of Mitchell's chemios-
motic coupling hypothesis [7]. These early discoveries
established the value of studying diverse microbes from
the environment and set the stage for phylogenetic studies
leading to the three-domain view of life [8].

In 2000, the complete genome sequence of Halobacterium
sp. NRC-1 [9-11], a typical haloarchaeon widely distrib-
uted in hypersaline environments, such as solar salterns
and the Great Salt Lake, Utah, USA [12], became available.
More recently, four additional haloarchaeal genomes
have been or are currently being sequenced: Haloarcula
marismortui, a metabolically versatile microorganism from
the Dead Sea [13], Haloferax volcanii, a prototrophic and
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moderate halophilic microorganism from Dead Sea mud
[14], Natronomonas pharaonis, an alkaliphile from the soda
lakes of the Sinai [15], and Halorubrum lacusprofundi, a
cold-adapted extreme halophile from an Antarctic lake
[16]. These five genomes provide an excellent view of
haloarchaeal diversity. Here, we review what has been
learned about the first sequenced haloarchaeon, Halobac-
terium sp. NRC-1, primarily through post-genomic studies
[11].

Halobacterium sp. NRC-1
Halobacterium sp. NRC-1 is an extreme halophile (with a
4.3 M NaCl optimum) that grows best heterotrophically
in a rich organic broth. However, the organism is meta-

bolically versatile (Fig. 1); in addition to its aerobic meta-
bolic capacity, it possesses facultative growth capabilities
through anaerobic respiration, utilizing dimethyl sulfox-
ide (DMSO) and trimethylamine N-oxide (TMAO), and
via arginine fermentation. It also has phototrophic capa-
bility through the light-driven proton pumping activity of
the retinal protein, bacteriorhodopsin, which is organized
into a two-dimensional crystalline array in its purple
membrane. Halobacterium sp. NRC-1 cells are highly
motile, synthesizing gas vesicles, which are hollow pro-
tein structures, intracellularly for buoyancy and flotation,
and sensory rhodopsins for phototaxis. Relevant to the
study of genetic regulation, Halobacterium sp. NRC-1
responds to many environmental effectors, including

Physiology and transcriptomics of Halobacterium sp. NRC-1Figure 1
Physiology and transcriptomics of Halobacterium sp. NRC-1. An overview of relative transcript levels of selected genes 
is indicated, along with metabolic characteristics of the cell, indicated by rectangular box. The double line depicts the cell mem-
brane. Square boxes, left to right: transcription levels in cells grown by aerobic respiration, anaerobic respiration using TMAO, 
and fermentation. Green, yellow, and red boxes indicate reduced, unchanged, and increased transcript levels, respectively. 
Abbreviations: Nuo: NADH oxidoreductase; MK/MKH2: oxidized/reduced menaquinone; Cyb: cytochrome b6 oxidoreductase; 
Cox: aa3-type cytochrome oxidase; Cyd: quinol bd oxidase; Cba: ba3-type oxidase; Dms: DMSO/TMAO reductase; TCA: tri-
carboxylic acid cycle; Bop: bacterio-opsin; Atp: ATP synthase
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high and low temperatures and salinities, and ultraviolet
(UV) and ionizing radiation.

A major advantage of studying Halobacterium sp. NRC-1 is
its ease of manipulation in the laboratory. Culturing is
simple, with a 6 hour generation time at 42°C [17]. Addi-
tionally, it is genetically tractable, being transformable at
high-efficiency [18], and a good selection of cloning and
expression vectors are available [19]. Several genetic
markers have been developed, including selectable mark-
ers for mevinolin resistance, as well as the selectable and
counterselectable ura3 gene, which permit construction of
systematic gene knockouts and replacements [20-22].
Whole-genome DNA microarrays have been used success-
fully to interrogate patterns of gene expression [23-26].
Halobacterium sp. NRC-1 cells are easily lysed in hypot-
onic medium, releasing both soluble and membrane pro-
teins for biochemical and biophysical studies [17]. These
characteristics, together with the availability of the com-

plete genome sequence, have made Halobacterium sp.
NRC-1 an excellent model microorganism for research as
well as for teaching.

Genome, genes, and proteins
Halobacterium NRC-1 possesses the smallest genome to
date among halophiles. It is 2,571,010 bp in size, and is
composed of a large GC-rich chromosome (2,014,239 bp,
68 % G+C), and two smaller extrachromosomal repli-
cons, pNRC100 (191,346 bp) and pNRC200 (365,425
bp), with 58–59 % G+C composition [9-11]. The two
smaller replicons contain 145,428 bp of identical DNA
and 33–39 kb inverted repeats catalyzing inversion iso-
mers [27], and the majority of the 91 IS elements, repre-
senting 12 families, found in the genome [10,11]. As a
result of the large number of repeated sequences, genome
assembly required extensive genomic mapping and an
ordered clone library of pNRC100 [9,10][27]. Of the
2,630 likely protein-coding genes in the genome, 2,532

Gene knockout strategies in Halobacterium sp. NRC-1Figure 2
Gene knockout strategies in Halobacterium sp. NRC-1. A. Nonessential genes. After a suicide vector containing a dele-
tion of a gene of interest (geneX) is integrated into the Halobacterium ∆ura3 host strain by selection of uracil prototrophy 
(Ura+), plasmid excision is selected with 5-fluoroorotic acid resistance (Foar), resulting in either replacement with the deleted 
allele (∆geneX) (left) or restoration of the wild-type allele (right). For genes that are essential for cell viability, only wild-type 
gene alleles are recovered. B. Essential genes. A pseudo-complementation strategy is used where an autonomously replicating 
plasmid vector which contains the functional gene of interest, geneX, is introduced into the host strain, e.g. by selection for 
mevinolin resistance (Mevr). Knockout of the chromosomal copy may then be selected using selections described in part A.
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are unique. Halobacterium predicted proteins were found
to be highly acidic [27] and a substantial number had bac-
terial homologs as their closest relatives, suggesting that
they might have been acquired through lateral gene trans-
fer [28]. In addition, 52 RNA genes were also identified;
however, the 16S rRNA sequence and other unique char-
acteristics did not allow placement within a validly
described Halobacterium species, and this point has been
the subject of some controversy [29-31]. Interestingly,
about 40 genes in pNRC100 and pNRC200 code for func-
tions likely to be essential or important for cell viability
(e.g. thioredoxin and thioredoxin reductase, a cytochrome
oxidase, a DNA polymerase, multiple TATA-binding pro-
teins (TBP) and transcription factor B (TFB) transcription
factors, and the only arginyl-tRNA synthetase in the
genome). As a result, these replicons were suggested to be
essential "minichromosomes" rather than megaplasmids
[9]. Several reports on annotation of the Halobacterium sp.
NRC-1 genome have been published [9-11].

Development of experimental tools
A key factor in the development of Halobacterium sp. NRC-
1 as a model system has been its genetic tractability [19].
Transformation was accomplished by employing EDTA to
chelate Mg2+, thereby weakening the S-layer, and resulting
in formation of spheroplasts, followed by treatment with
polyethylene glycol, which induces competence [18].
Plasmid vectors were derived from large extrachromo-
somal replicons, e.g. pNRC100 [32], or natural miniplas-
mids, such as pHSB [33]. For example, a popular shuttle
vector, pNG168 [34], contains the pNRC100 minimal
replicon for replication and Mevr marker for selection in
Halobacterium. The Mevr marker contains an up-promoter
allele of the Haloferax volcanii 3-hydroxy-3-methylglu-
taryl-CoA reductase (mva) gene, required for branched
chain lipid biosynthesis [35].

A directed gene replacement and knockout method for
Halobacterium sp. NRC-1, the first described for an
archaeon [20-22], exploits the selectable and counterse-
lectable properties of the ura3 gene (Fig. 2). This gene
codes for orotidine 5'-phosphate decarboxylase required
for pyrimidine biosynthesis [36]. In this approach, a tar-
get gene allele (e.g. a deletion or point mutation) is first
cloned into a suicide plasmid (e.g. pBB400) capable of
replication in E. coli (but not in Halobacterium); the plas-
mid also contains the ura3 gene under the control of its
own promoter. The resulting plasmid is introduced into a
Halobacterium ∆ura3 host via transformation. Integrants
are then selected by uracil prototrophy (Ura+) using com-
mercially available uracil-dropout media components.
Subsequently, plasmid excisants are selected via ura3
counterselection, 5-fluoroorortic acid-resistance (Foar),
giving rise to derivatives containing either the original or

mutant allele, which may be distinguishable by PCR or
phenotypic analysis.

For transcriptome analysis in Halobacterium sp. NRC-1,
both PCR microarray and Agilent in situ synthesized oligo-
nucleotide [37] microarray platforms have been
employed and used successfully for physiological and
genetic studies [23-26]. For oligonucleotide arrays, probes
of 60-nucleotide lengths were designed for 2474 ORFs uti-
lizing the program OligoPicker [38]. Neither the relatively
high average GC content of the chromosome nor the var-
iations in GC content in different regions of Halobacterium
sp. NRC-1 were problematic in the probe design and
exceptionally high data quality was obtained, with low
occurrence of data outliers due to non-uniform spot mor-
phology, background noise, or spot-to-spot variation for
replicate experiments.

The Halobacterium sp. NRC-1 proteome has also been
extensively analyzed by liquid chromatography-tandem
mass spectroscopy (LC/MS/MS) [39,40], and a total of
888 proteins were identified in whole cell lysates. The pro-
teome from a similar Halobacterium species was analyzed
by 2D-GE and MALDI-TOF mass spectrometric analysis of
tryptic fragments and a reference map was established
[41,42].

Experimental studies of gene systems
Two types of gene systems have been studied in Halobac-
terium sp. NRC-1: those relevant to success in their
extreme environment, such as the purple membrane, gas
vesicles, DNA repair and anaerobic physiology, and those
that are similar to fundamental eukaryotic processes, such
as DNA replication, and transcription systems. Some stud-
ies were initiated prior to genome sequencing using
genetic approaches have been advanced via genomic, bio-
informatic, or functional genomic work, during the post-
genomic period.

DNA replication and repair
Halobacterium sp. NRC-1 provided the first opportunity
for isolating autonomously replicating sequences from an
archaeon and this was accomplished for both the chromo-
some and the large extrachromosomal replicon,
pNRC100 [32,43]. The replicating sequences, putative in
vivo origins of replication, were isolated and cloned using
their ability to endow autonomous replication ability on
E. coli plasmids containing a selectable mevinolin resist-
ance (Mevr) marker. For the chromosome, a directed
approach was taken to investigate whether chromosomal
loci proximal to orc/cdc6 homologs possessed autono-
mous replication ability. A region of 2.3 kb containing the
orc7 gene (one of ten eukaryotic-type origin recognition
complex homologs), plus 750 bp upstream of the orc7
gene translational start, displayed replication ability [43].
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A nearly perfect inverted repeat of 33 bp flanking an
extremely AT-rich stretch of 189 bp (56% GC) was found
in the upstream region. This ori region corresponded to
one of two chromosomal inflection points in cumulative
GC-skew analysis (which has been used for bioinformatic
prediction of replication origins) [28,44]. The ori region
was also conserved in the genome sequences of other
halophilic archaea, including Haloarcula marismortui and
Haloferax volcanii [43]. However, the region surrounding
another orc gene near a second inflection point was not
able to confer replication ability, suggesting the existence
of only a single chromosomal origin in Halobacterium sp.
NRC-1.

Previously, an autonomously replicating region of
pNRC100, containing a 550 bp AT-rich region upstream
of the repH gene, was isolated using similar methodology
[32]. However, in this case, the nature of the gene and the
upstream region was unlike that found on any other rep-
licon, except pHH, a closely related plasmid in another
Halobacterium strain [45]. For the pNRC100 replication
region, autonomous replication was disrupted by linker
scanning mutagenesis in repH, which was necessary for
plasmid replication; however, the upstream region could
be interrupted and partially deleted without knocking out
replication ability. Genome sequencing showed that the
repH gene region is present in both pNRC100 and
pNRC200, and therefore may be involved in the replica-
tion of both replicons. Interestingly, the latter replicon
also contains multiple orc gene homologs, the functions
of which are unknown [9-11]. In addition to providing a
genetic approach to DNA replication studies in archaea,
the availability of Halobacterium replicating sequences has
facilitated the development of vectors, including both
shuttle plasmids and expression vectors [19].

The number of replication origins and their coordination
in Halobacterium sp. NRC-1 has been of significant inter-
est. The euryarchaeon, Pyrococcus abyssi, was shown to
contain a single chromosomal replication origin com-
posed of similar large inverted repeats 5' to the only orc/
cdc6 gene of this archaeon [46,47]. However, the crenar-
chaea, Sulfolobus solfataricus and S. acidocaldarius, were
reported to contain two or three chromosomal replication
origins proximal to multiple orc/cdc6 genes in their
genomes [48,49]. In Halobacterium sp. NRC-1, a euryar-
chaeon, the roles and relationships of multiple (10) orc/
cdc6 and repH genes in replication require further experi-
mentation for complete understanding.

Repair of DNA damage has been investigated in Halobac-
terium sp. NRC-1 because of the observed high levels of
radiation resistance and the presence of homologs of both
bacterial and eukaryotic-type repair genes [50]. For UV
resistance, biochemical and genetic work demonstrated

the presence of cyclobutane pyrimidine dimer photolyase
activity, corresponding to one of two phr gene homologs
in the genome [51]. Photolyase catalyzes the photore-
versal of primary photoadducts from UV radiation, a proc-
ess called photoreactivation, which is widely distributed
in nature. In two DNA microarray studies, the transcrip-
tional response of cells to UV irradiation was studied
[24,26]; however, different results were obtained. In one
study using 30–70 J/m2, specific induction of radA1 and
replication factor A genes (rfa3, rfa8, and ral) was
observed [26]. In the other study, using substantially
higher doses, a large number of unexplained changes
resulted, probably caused by an overwhelming of the cel-
lular repair systems and other physiological perturbations
that were introduced [24]. In a biochemical study of the
crenarchaeon, Sulfolobus solfataricus, replication factor A
was found to bind to UV damaged DNA [52]. In a study
of responses to high energy radiation (γ) and desiccation,
both of which lead to extensive double-strand DNA
breaks, resistance to these conditions was correlated, and
protective effects of salts and membrane pigments were
observed [53].

The purple membrane regulon
The purple membrane of Halobacterium sp. NRC-1 con-
tains the light-driven proton pump, bacteriorhodopsin, a
complex of a protein, bacterio-opsin (bop gene product),
and a retinal chromophore (Fig. 1). The purple membrane
allows cells to grow phototrophically under high illumi-
nation, which may be important for survival under micro-
aerobic and other stressful conditions [5,54]. A
combination of genetic, bioinformatic, and transcrip-
tional analysis showed the involvement of the bop gene
cluster [23,54]. The cluster includes, in addition to bop,
crtB1 and brp, coding the first and last committed steps of
retinal synthesis, blp, a gene of unknown function, and
bat, the sensor-activator gene. The Bat sequence predicted
a complex protein consisting of a GAF (cGMP-binding)
domain, PAS/PAC (redox-sensing) domain, and C-termi-
nal DNA-binding helix-turn-helix (HTH) motif [54,55].
Additional Bat-like putative regulatory genes have been
found in the genome, and together are likely to be respon-
sible for the complex response of this archaeon to light
and oxygen. The role of brp in the oxidative cleavage of β-
carotene to form retinal was shown using the ura3-based
gene knockout system, which also led to the identification
of an unlinked gene, blh, capable of performing the same
function [21]. Another unlinked gene involved in retinal
biosynthesis, encoding lycopene cyclase (crtY), was also
identified by a genetic knockout [56].

The bop gene promoter region was studied by a combina-
tion of saturation mutagenesis and bioinformatic analysis
[57-60]. The TATA-box sequence in the promoter deviates
significantly from the archaeal consensus, suggesting the
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involvement of novel transcription factors in its recogni-
tion [58]. In this context, the finding of 6 Tbp (TATA-
binding protein) genes and 7 Tfb (transcription factor B)
genes in the Halobacterium sp. NRC-1 genome suggested
the use of alternative Tbp-Tfb pairs in promoter selection
and transcriptional regulation, similar to that proposed
for higher organisms [60,61]. Mutagenesis also revealed a
regulatory site, UAS, 5' to bop [59]. Additionally, UAS sites
were found near two retinal synthesis genes, brp and crtB1,
which are coordinately regulated with bop [54]. Similari-
ties of the UAS and Bat regulator to diverse organisms,
including a plant and a γ-proteobacterium, suggested an
ancient origin for this regulon [11,54].

Anaerobic metabolism
The metabolic capability of Halobacterium sp. NRC-1
includes anaerobic respiration using DMSO and TMAO as
electron acceptors and fermentation with arginine via the
arginine deiminase pathway (Fig. 1) [62,63]. The capabil-
ity for anaerobic growth is likely advantageous for the
organism in its natural habitat as high salt concentrations
and elevated temperatures, together with high cell densi-
ties, reduce the availability of molecular oxygen. In a
recent study of anaerobic respiration in Halobacterium sp.
NRC-1 [25], bioinformatic and transcriptional analyses,
and gene knockouts showed it to harbor a bifunctional
DMSO/TMAO reductase that is encoded by the dmsREA-
BCD operon. This reductase is more closely related to
NarG-type nitrate reductases than to bacterial DMSO/
TMAO reductases, although phylogenetic analysis was
inconclusive about its evolutionary origin. Whole-
genome oligonucleotide microarray studies showed that
the transcript level of the dms operon is strongly induced
under anaerobic conditions [25]. Gene knockouts showed
that expression of the dms operon is under positive tran-
scriptional control of the regulator, DmsR. The C-terminal
region of DmsR contains an HTH DNA-binding motif
similar to that of the bop gene activator, Bat [19,25]. DNA
microarray analysis also indicated that Halobacterium stays
primed for aerobic respiration even under anaerobic con-
ditions. This regulatory scheme could result in a fast met-
abolic response to oxygen as electron acceptor, when
available. It is complemented by the increased abundance
of gas vesicles (see below) under anaerobic conditions,
allowing the cells to float to more aerobic zones in the
water column. In a different study where Halobacterium
strains overproducing or lacking purple membrane (gen-
erated by extensive chemical mutagenesis) were com-
pared, it was deduced that during phototrophy, genes
required for arginine fermentation are repressed [23].

Gas vesicle biogenesis
Gas vesicles are hollow, buoyant protein structures that
allow Halobacterium sp. NRC-1 to float, increasing their
access to light and oxygen. A large gene cluster on

pNRC100 (gvpMLKJIHGFEDACNO) is necessary and suf-
ficient to produce gas vesicles [64-69]. Transcript mapping
established the presence of divergent promoters in the
gvpD-A intergenic region [66,67] and DNA microarrays
confirmed that essentially all of the gvp genes are induci-
ble under microaerobic, anaerobic, and other stressful
conditions [25]. Rightward transcription of gvpA and
gvpC, encoding the two most abundant gas vesicle pro-
teins, was induced in early exponential growth phase [69].
Transcription was inhibited by aeration and by the addi-
tion of a DNA gyrase inhibitor, suggesting that increased
DNA supercoiling is important for activation of gvpA tran-
scription. A combination of genetic and bioinformatic
analysis suggested that GvpE functions as an activator,
with a leucine-zipper motif mediating dimer formation,
and that GvpD, which contains an NTP-binding site,
likely functions as a repressor by blocking GvpE-mediated
activation [67,70].

The protein composition of Halobacterium sp. NRC-1 gas
vesicles was studied using immunoblotting [71]. In addi-
tion to GvpA and GvpC, two small acidic polypeptides,
GvpJ and GvpM, similar to GvpA were also identified as
being present in the structure, and their function in deter-
mining vesicle membrane conformation was proposed
[71]. The GvpC protein, which contains a motif that is
repeated 7–8 times, and is predicted to be involved in
binding to GvpA, was shown to be present on the surface
of vesicles. Recombinant GvpC fusion proteins were
found to bind to the surface of gas vesicles and are being
used in a biotechnology application as an antigen delivery
system [72,73]. Three additional proteins, GvpF, G, and L,
were also observed in Halobacterium NRC-1 gas vesicles,
and coiled-coil domains were identified in GvpF and
GvpL, suggestive of self-association [71]. This was further
confirmed by the observation of laddering of GvpL pro-
tein on gels. These genetic and biochemical results are
consistent with the findings of comparative genomic stud-
ies, which showed that the corresponding gvp genes are
present in all gas vesicle containing organisms examined
[71,74-77].

Arsenic resistance
Halobacterium sp. NRC-1 is resistant to arsenic, a heavy
metal which is frequently found in hypersaline environ-
ments [22]. A gene cluster on pNRC100, arsMR2ADR1C,
organized into three operons, was shown to be involved
through construction and analysis of gene knockouts.
Deletion of the arsADRC gene region increased sensitivity
to arsenite. However, knockout of a putative arsB gene
homolog on the chromosome showed no phenotypic
effect, suggesting the existence of a novel arsenite pump in
Halobacterium sp. NRC-1. Interestingly, knockout of the
arsM gene also produced increased sensitivity to arsenite,
indicating a second novel mechanism of arsenic resistance
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involving an arsenite methyltransferase. The arsenite
resistance elements were shown to be regulated, with
resistance to arsenic being inducible by exposure to a sub-
lethal concentration of the metal [22]. These results are
consistent with Halobacterium sp. NRC-1 containing two
arsenite detoxification systems.

Coenzyme B12 metabolism
Coenzyme B12 metabolism has been explored in Halobac-
terium sp. NRC-1 using a combination of physiological
and genetic approaches [78-81]. Salvaging of coenzyme
B12 precursors from the environment was shown to
require a previously unidentified amidohydrolase, the
cbiZ gene product, which converts adenosylcobinamide to
adenosylcobyric acid, an intermediate of the de novo coen-

zyme B12 biosynthetic route [80]. The salvaging of coen-
zyme B12 precursors by the CbiZ enzyme appears to be a
uniquely archaeal strategy, because all of the genomes of
B12-producing archaea have a cbiZ ortholog. Genetic stud-
ies showed that uptake of cobalamins for Halobacterium
occurs via an ABC transporter similar to the bacterial Btu
system [81].

Other studies
Several additional experimental studies have been carried
out on Halobacterium sp. NRC-1 genes, e.g. using
Escherichia coli as host for complementation analysis and
heterologous expression. An RNase H similar to the Type
1 bacterial enzyme, required for primer removal in DNA
replication, was found to suppress the temperature-sensi-

Surface charge comparisons of the TBP-TFB-DNA complexes in Halobacterium and Homo sapiensFigure 3
Surface charge comparisons of the TBP-TFB-DNA complexes in Halobacterium and Homo sapiens. Acidic char-
acter of proteins is indicated by red and basic by blue. DNA strands are green (coding) and pink or orange (non-coding). Panels 
A and B show the modeled complex in Halobacterium using a dielectric constant of 48.4 (NaCl concentration of 5 M) while pan-
els C and D show the Homo sapiens complexes using a dielectric constant of 80.0 (NaCl concentration of 0 M). Panels A and C 
show transcription going into the plane while B and D show transcription coming out of the plane.
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tive growth defect in E. coli, although the basic region
present in the E. coli protein is absent in the haloarchaeal
protein [82]. The haloarchaeal enzyme was also shown to
cleave an Okazaki fragment-like substrate, consistent with
its function in DNA replication. In another study, the
molecular recognition of a tRNACys by the bacterial-type

cysteinyl-tRNA synthetase of Halobacterium sp. NRC-1 was
studied after expression in E. coli and showed similarities
to its bacterial counterpart [83].

Bioinformatic studies
A large number of bioinformatics investigations have
been carried out on Halobacterium sp. NRC-1 since
genome sequencing. They include studies of protein acid-
ity, proteome structure prediction, and phylogenetic anal-
ysis of genes that may have been acquired through lateral
gene transfer (LGT), as well as a number of broad or nar-
rowly focused comparative studies.

Acidic proteome
Isoelectric point analysis of the predicted proteome of
Halobacterium sp. NRC-1 provided deep insight into the
ability of this organism to survive under hypersaline con-
ditions [9-11,28]. A dramatically low average pI (~4.9)
was found Halobacterium proteins and the generality of
this observation was confirmed through analysis of subse-
quent haloarchaeal genome sequences. In contrast, the
median pI of nearly all non-halophilic proteomes has
been found to be close to neutral, usually with a bimodal
distribution of basic (pI ~10) and acidic (pI ~5) proteins.
Notable exceptions were for some methanogenic archaea
and an extremely halophilic bacterium, Salinibacter ruber,
which sometimes coexist with Halobacterium in hypersa-
line environments and also contain relatively high inter-
nal salt concentrations [84-86]. The acidity of halophilic
proteins likely helps maintain their function through
increased solvation in an intracellular milieu with mark-
edly reduced water activity [87].

The acidic pI of Halobacterium proteins was correlated to a
high concentration of surface negative charge in modeled
structures [28]. A transcription factor (TbpE) and a topoi-
somerase subunit (GyrA) both showed significantly
higher surface negative charges when compared to their
homologs in non-halophilic organisms using a Coulomb
charge calculation. Although there is an overall reduction
in deprotonation of acidic residues on the protein surface
at 5 M NaCl as the result of a decrease in the dielectric con-
stant [88], the surface charges of most proteins were still
highly negative. For example, when the Tbp-Tfb-DNA
complex was modeled using a dielectric constant reflect-
ing intracellular conditions, a dramatic difference in sur-
face charges, compared to the human complex, was still
observed (Fig. 3). This pattern of increased negative
charge and lowered pI was observed for the vast majority
of haloarchaeal proteins when compared to their
homologs.

In another study, de novo structure prediction was con-
ducted on 1,185 proteins and protein domains of Halo-
bacterium sp. NRC-1 [89]. Putative functions were

"Bacterial" gene content in the Halobacterium sp.NRC-1 repli-con pNRC200Figure 4
"Bacterial" gene content in the Halobacterium sp. 
NRC-1 replicon pNRC200. A. Average bacterial charac-
ter is plotted in a 40 ORF window (innermost plot in blue). 
Individual genes closely related to bacteria in Blast analysis 
are shown with blue dots while those identified through 
COG analysis are shown as red dots. IS elements are indi-
cated by lines on the outermost circle. B. Quartet puzzling 
maximum-likelihood phylogenetic tree of ArgS sequences 
from archaea and three classes of bacteria. A probable LGT 
of an argS gene from a bacterium to Halobacterium (Hbt. 
NRC-1) is apparent. Two other haloarchaea (Haloferax volca-
nii: H. vo; Haloarcula marismortui: H. ma) contain archaeal-type 
ArgS-coding genes.
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predicted by searching the Protein DataBank. Three exam-
ples, chemotaxis proteins, possible prophage polypep-
tides and archaeal transcriptional regulators, were
highlighted in the published report.

Evolution and lateral gene transfer
Initial whole-genome phylogenetic analysis of Halobacte-
rium sp. NRC-1 confirmed the archaeal status of Halobac-
terium sp. NRC-1 [10], but also noted interesting
similarities to the Gram-positive spore-forming bacte-
rium, Bacillus subtilis, and the radiation-resistant bacte-
rium, Deinococcus radiodurans. Subsequent whole-genome
analysis using a larger number of completed genomes
produced phylogenetic trees with Halobacterium branch-
ing near the base of the archaeal branch, or even within
the bacteria [90,91]. This was in contrast to phylogenetic
analysis based on concatenated sequences of transcription
and transcriptional machinery, which produced results
similar to 16S rRNA analysis placing Halobacterium within
the archaeal clade [92]. One interpretation accounting for
these incongruent results was that many LGTs have
occurred between some bacteria and haloarchaea,
although this conclusion appears to be open to some
debate (Fig. 4) [93].

In spite of the initial uncertainties, several cases for LGT
now appear to be convincing. Some components of the
electron transport chain and biosynthetic proteins were
found to have gene organization identical to homologous
E. coli operons (nuo genes, coding subunits of NADH
dehydrogenase; cox genes, coding subunits of cytochrome
c oxidase; and men genes, coding for menaquinone bio-
synthesis) [28]. GC composition analysis showed these
genes to deviate significantly from nearby Halobacterium
genes and a phylogenetic study indicated their grouping
with bacterial genes. A further detailed study of the nuoI
gene showed clear phylogenetic affinity with proteobacte-
ria [94]. These studies suggested that haloarchaea may
have adapted to an oxidizing atmosphere by acquiring
components of the electron transport chain through LGT
events from bacteria [11].

A relatively recent case of LGT is the arginyl synthetase
(argS) gene of Halobacterium sp. NRC-1, which is found on
pNRC200 [9]. Although its GC composition did not differ
significantly from the genomic average, maximum-likeli-
hood phylogenetic analysis showed that ArgS from Halo-
bacterium does not group with other archaeal (including
other haloarchaeal) ArgS proteins, but is most closely
related to a class of ArgS proteins from bacteria (Fig. 4).
Given the essential nature of arginyl synthetases to pro-
tein synthesis, it is likely that a bacterial argS gene was cap-
tured and the archaeal argS was subsequently lost in
Halobacterium sp. NRC-1. Another example of ortholo-

gous gene displacement has been found in studies of lipid
biosynthesis genes [95].

One of the most interesting evolutionary questions con-
cerning Halobacterium centers on the origin of the light-
driven proton pump, bacteriorhodopsin [11]. Such retinal
chromoproteins (bacteriorhodopsin, halorhodopsin and
sensory rhodopsins) originally discovered in haloarchaea
have now been found in diverse bacteria and eukaryotes
and therefore may have evolved before the divergence of
the three domains of life [96]. Alternatively, occurrence in
relatively few and diverse clades, e.g. oceanic planktonic
bacteria, some fungi, and haloarchaea, suggests dispersal
by LGT. Although phylogenetic analysis has thus far been
inconclusive, spectroscopic characteristics have suggested
the possible co-evolution of retinal with chlorophyll-
based pigments [11,97].

Other bioinformatics studies
An interesting study showed the importance of the Tat
protein export pathway in Halobacterium sp. NRC-1
[98,99]. This pathway allows transmembrane transport of
proteins in a fully folded conformation and is used for
export of a moderate number of proteins in bacteria, e.g.
those binding cofactors such as iron-sulfur clusters and
molybdopterin. However, in Halobacterium sp. NRC-1, the
majority of exported proteins are predicted to use the Tat
pathway. This has been explained as an adaptation to the
highly saline conditions, which may require intracellular
folding for protein stability [98,99]. In another study, sev-
eral poorly conserved open reading frames (ORFans) of
Halobacterium sp. NRC-1, with apparent paralogs in the
genome, but with no clear homologs in other organisms,
were shown to be transcribed. The results indicated that
all of the studied paralogous ORFans corresponded to real
genes, including those comprising relatively short pro-
teins [100]. Two comparative genomics studies have
appeared, one comparing information transfer genes spe-
cifically among haloarchaeal species [101], and another
comparing stress response genes in Halobacterium sp.
NRC-1, E. coli, and Drosophila melanogaster [102].

Future prospects
Haloarchaea represent excellent experimental models for
extremophile biology and for fundamental aspects of
archaeal and eukaryotic biology. They also serve as
resources for theoretical questions of evolutionary biol-
ogy and astrobiology [103]. For Halobacterium sp. NRC-1,
the determination of the complete genome sequence and
the development of many post-genomic experimental
techniques, including gene knockout capability, DNA
microarrays, and proteomics, as well as in silico bioinfor-
matics approaches, have elevated this organism to the sta-
tus of a leading model system among extremophiles and
archaea. An advantage of post-genomic studies on Halo-
Page 9 of 12
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bacterium sp. NRC-1 is that they may be conducted using
well-characterized isogenic strains. As a result, future
research efforts on this model system are likely to contrib-
ute significantly to broadening our understanding of fun-
damental biological concepts and ultimately testing our
predictive powers.
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